4,979 research outputs found

    Magnetic Quantum Dot: A Magnetic Transmission Barrier and Resonator

    Full text link
    We study the ballistic edge-channel transport in quantum wires with a magnetic quantum dot, which is formed by two different magnetic fields B^* and B_0 inside and outside the dot, respectively. We find that the electron states located near the dot and the scattering of edge channels by the dot strongly depend on whether B^* is parallel or antiparallel to B_0. For parallel fields, two-terminal conductance as a function of channel energy is quantized except for resonances, while, for antiparallel fields, it is not quantized and all channels can be completely reflected in some energy ranges. All these features are attributed to the characteristic magnetic confinements caused by nonuniform fields.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    Coulomb Blockade and Kondo Effect in a Quantum Hall Antidot

    Full text link
    We propose a general capacitive model for an antidot, which has two localized edge states with different spins in the quantum Hall regime. The capacitive coupling of localized excess charges, which are generated around the antidot due to magnetic flux quantization, and their effective spin fluctuation can result in Coulomb blockade, h/(2e) Aharonov-Bohm oscillations, and the Kondo effect. The resultant conductance is in qualitative agreement with recent experimental data.Comment: 3 figures, to appear in Physical Review Letter

    First-Principles Study on Electron Conduction in Sodium Nanowire

    Full text link
    We present detailed first-principles calculations of the electron-conduction properties of a three-sodium-atom nanowire suspended between semi-infinite crystalline Na(001) electrodes during its elongation. Our investigations reveal that the conductance is ~1 G0 before the nanowire breaks and only one channel with the characteristic of the 3s3s orbital of the center atom in the nanowire contributes to the electron conduction. Moreover, the channel fully opens around the Fermi level, and the behavior of the channel-current density is insensitive to the structural deformation of the nanowire. These results verify that the conductance trace as a function of the electrode spacing exhibits a flat plateau at ~1 G0 during elongation.Comment: 8 pages, 5 figure

    Towards unified understanding of conductance of stretched monatomic contacts

    Full text link
    When monatomic contacts are stretched, their conductance behaves in qualitatively different ways depending on their constituent atomic elements. Under a single assumption of resonance formation, we show that various conductance behavior can be understood in a unified way in terms of the response of the resonance to stretching. This analysis clarifies the crucial roles played by the number of valence electrons, charge neutrality, and orbital shapes.Comment: 2 figure

    Isospin dependence of relative yields of K+K^+ and K0K^0 mesons at 1.528 AGeV

    Get PDF
    Results on K+K^+ and K0K^0 meson production in 4496^{96}_{44}Ru + 4496^{96}_{44}Ru and 4096^{96}_{40}Zr + 4096^{96}_{40}Zr collisions at a beam kinetic energy of 1.528AA GeV, measured with the FOPI detector at GSI-Darmstadt, are investigated as a possible probe of isospin effects in high density nuclear matter. The measured double ratio (K+/K0K^+/K^0)Ru_{Ru}/(K+/K0K^+/K^0)Zr_{Zr} is compared to the predictions of a thermal model and a Relativistic Mean Field transport model using two different collision scenarios and under different assumptions on the stiffness of the symmetry energy. We find a good agreement with the thermal model prediction and the assumption of a soft symmetry energy for infinite nuclear matter while more realistic transport simulations of the collisions show a similar agreement with the data but also exhibit a reduced sensitivity to the symmetry term.Comment: 5 pages, 3 figures. accepted for publication in Phys. Rev.

    Strange meson production in Al+Al collisions at 1.9A GeV

    Full text link
    The production of K+^+, K^- and φ\varphi(1020) mesons is studied in Al+Al collisions at a beam energy of 1.9A GeV which is close or below the production threshold in NN reactions. Inverse slopes, anisotropy parameters, and total emission yields of K±^{\pm} mesons are obtained. A comparison of the ratio of kinetic energy distributions of K^- and K+^+ mesons to the HSD transport model calculations suggests that the inclusion of the in-medium modifications of kaon properties is necessary to reproduce the ratio. The inverse slope and total yield of ϕ\phi mesons are deduced. The contribution to K^- production from ϕ\phi meson decays is found to be [17 ±\pm 3 (stat) 7+2^{+2}_{-7} (syst)] %. The results are in line with previous K±^{\pm} and ϕ\phi data obtained for different colliding systems at similar incident beam energies.Comment: 16 pages, 11 figure

    Two-proton small-angle correlations in central heavy-ion collisions: a beam-energy and system-size dependent study

    Full text link
    Small-angle correlations of pairs of protons emitted in central collisions of Ca + Ca, Ru + Ru and Au + Au at beam energies from 400 to 1500 MeV per nucleon are investigated with the FOPI detector system at SIS/GSI Darmstadt. Dependences on system size and beam energy are presented which extend the experimental data basis of pp correlations in the SIS energy range substantially. The size of the proton-emitting source is estimated by comparing the experimental data with the output of a final-state interaction model which utilizes either static Gaussian sources or the one-body phase-space distribution of protons provided by the BUU transport approach. The trends in the experimental data, i.e. system-size and beam energy dependences, are well reproduced by this hybrid model. However, the pp correlation function is found rather insensitive to the stiffness of the equation of state entering the transport model calculations.Comment: 9 pages, 8 figures, accepted at Eur. Phys. Journ.

    Wireless body sensor design for intra-vaginal temperature monitoring

    Get PDF
    Sensor nodes are small devices able to collect and retrieve sensorial data. The use of these sensors for medical purposes offers valuable contributions to improve patients’ healthcare, both for diagnosis and therapeutics monitoring. An important and common parameter used on healthcare diagnosis is the body temperature. It is monitored on several matters related with gynecological and obstetrics issues but, usually it is measure at the skin surface. Then, this paper proposes the design concepts of a new intra-body sensor for long-term intra-vaginal temperature collection. The embedded IEEE 802.15.4 communication module allows the integration of this sensor in wireless sensor networks for remote data access and monitoring. It is presented the sensor architecture, the construction of the corresponding testbed, and its performance evaluation. This sensor may be used on several applications, including fertile and ovulation period detection, and preterm labor prevention
    corecore