We present detailed first-principles calculations of the electron-conduction
properties of a three-sodium-atom nanowire suspended between semi-infinite
crystalline Na(001) electrodes during its elongation. Our investigations reveal
that the conductance is ~1 G0 before the nanowire breaks and only one channel
with the characteristic of the 3s orbital of the center atom in the nanowire
contributes to the electron conduction. Moreover, the channel fully opens
around the Fermi level, and the behavior of the channel-current density is
insensitive to the structural deformation of the nanowire. These results verify
that the conductance trace as a function of the electrode spacing exhibits a
flat plateau at ~1 G0 during elongation.Comment: 8 pages, 5 figure