172 research outputs found

    Long-term remission of myopic choroidal neovascular membrane after treatment with ranibizumab: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Myopia has become a big public health problem in certain parts of the world. Sight-threatening complications like choroidal neovascularisation membranes occur in up to 10% of pathological myopia, and natural history studies show a trend towards progressive visual loss. There are long-term financial and quality-of-life implications in this group of patients, and treatment strategies should aim for long-term preservation of vision.</p> <p>Case presentation</p> <p>A 56-year-old Caucasian woman presented with a best-corrected visual acuity of 6/6-1 in her right eye and 6/24 in her left. Fundal examination revealed pathological myopia in both eyes and an elevated lesion associated with pre-retinal haemorrhage in the left macula. Ocular coherence tomography and fundus fluorescein angiogram confirmed a subfoveal classic choroidal neovascularisation membrane. The patient decided to proceed with intravitreal ranibizumab (0.5 mg) therapy. One month after treatment, best-corrected visual acuity improved to 6/12 in her left eye, with complete resolution subretinal fluid on ocular coherence tomography. After three months, best-corrected visual acuity further improved to 6/9, which was maintained up to 16 months post-treatment.</p> <p>Conclusion</p> <p>We suggest intravitreal ranibizumab as an alternative treatment for long-term remission of myopic choroidal neovascular membrane. It also suggests that myopic choroidal neovascularisation membranes may require fewer treatments to achieve sustained remission. Furthermore, this could serve as a feasible long-term management option if used in conjunction with ocular coherence tomography.</p

    Prostacyclin reverses platelet stress fibre formation causing platelet aggregate instability

    Get PDF
    Prostacyclin (PGI2) modulates platelet activation to regulate haemostasis. Evidence has emerged to suggest that thrombi are dynamic structures with distinct areas of differing platelet activation. It was hypothesised that PGI2 could reverse platelet spreading by actin cytoskeletal modulation, leading to reduced capability of platelet aggregates to withstand a high shear environment. Our data demonstrates that post-flow of PGI2 over activated and spread platelets on fibrinogen, identified a significant reduction in platelet surface area under high shear. Exploration of the molecular mechanisms underpinning this effect revealed that PGI2 reversed stress fibre formation in adherent platelets, reduced platelet spreading, whilst simultaneously promoting actin nodule formation. The effects of PGI2 on stress fibres were mimicked by the adenylyl cyclase activator forskolin and prevented by inhibitors of protein kinase A (PKA). Stress fibre formation is a RhoA dependent process and we found that treatment of adherent platelets with PGI2 caused inhibitory phosphorylation of RhoA, reduced RhoA GTP-loading and reversal of myosin light chain phosphorylation. Phospho-RhoA was localised in actin nodules with PKA type II and a number of other phosphorylated PKA substrates. This study demonstrates that PGI2 can reverse key platelet functions after their initial activation and identifies a novel mechanism for controlling thrombosis

    Toward a better definition of focal cortical dysplasia: An iterative histopathological and genetic agreement trial.

    Get PDF
    OBJECTIVE: Focal cortical dysplasia (FCD) is a major cause of difficult-to-treat epilepsy in children and young adults, and the diagnosis is currently based on microscopic review of surgical brain tissue using the International League Against Epilepsy classification scheme of 2011. We developed an iterative histopathological agreement trial with genetic testing to identify areas of diagnostic challenges in this widely used classification scheme. METHODS: Four web-based digital pathology trials were completed by 20 neuropathologists from 15 countries using a consecutive series of 196 surgical tissue blocks obtained from 22 epilepsy patients at a single center. Five independent genetic laboratories performed screening or validation sequencing of FCD-relevant genes in paired brain and blood samples from the same 22 epilepsy patients. RESULTS: Histopathology agreement based solely on hematoxylin and eosin stainings was low in Round 1, and gradually increased by adding a panel of immunostainings in Round 2 and the Delphi consensus method in Round 3. Interobserver agreement was good in Round 4 (kappa = .65), when the results of genetic tests were disclosed, namely, MTOR, AKT3, and SLC35A2 brain somatic mutations in five cases and germline mutations in DEPDC5 and NPRL3 in two cases. SIGNIFICANCE: The diagnoses of FCD 1 and 3 subtypes remained most challenging and were often difficult to differentiate from a normal homotypic or heterotypic cortical architecture. Immunohistochemistry was helpful, however, to confirm the diagnosis of FCD or no lesion. We observed a genotype-phenotype association for brain somatic mutations in SLC35A2 in two cases with mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Our results suggest that the current FCD classification should recognize a panel of immunohistochemical stainings for a better histopathological workup and definition of FCD subtypes. We also propose adding the level of genetic findings to obtain a comprehensive, reliable, and integrative genotype-phenotype diagnosis in the near future

    Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents

    Get PDF
    Rapid progress has been made in realizing battery electrode materials with high capacity and long-term cyclability in the past decade. However, low first-cycle Coulombic efficiency as a result of the formation of a solid electrolyte interphase and Li trapping at the anodes, remains unresolved. Here we report LixSi-Li2O core-shell nanoparticles as an excellent prelithiation reagent with high specific capacity to compensate the first-cycle capacity loss. These nanoparticles are produced via a one-step thermal alloying process. LixSi-Li2O core-shell nanoparticles are processible in a slurry and exhibit high capacity under dry-air conditions with the protection of a Li2O passivation shell, indicating that these nanoparticles are potentially compatible with industrial battery fabrication processes. Both Si and graphite anodes are successfully prelithiated with these nanoparticles to achieve high first-cycle Coulombic efficiencies of 94% to 4100%. The LixSi-Li2O core-shell nanoparticles enable the practical implementation of high-performance electrode materials in lithium-ion batteries.open6

    Dronedarone in high-risk permanent atrial fibrillation

    Get PDF
    BACKGROUND: Dronedarone restores sinus rhythm and reduces hospitalization or death in intermittent atrial fibrillation. It also lowers heart rate and blood pressure and has antiadrenergic and potential ventricular antiarrhythmic effects. We hypothesized that dronedarone would reduce major vascular events in high-risk permanent atrial fibrillation. METHODS: We assigned patients who were at least 65 years of age with at least a 6-month history of permanent atrial fibrillation and risk factors for major vascular events to receive dronedarone or placebo. The first coprimary outcome was stroke, myocardial infarction, systemic embolism, or death from cardiovascular causes. The second coprimary outcome was unplanned hospitalization for a cardiovascular cause or death. RESULTS: After the enrollment of 3236 patients, the study was stopped for safety reasons. The first coprimary outcome occurred in 43 patients receiving dronedarone and 19 receiving placebo (hazard ratio, 2.29; 95% confidence interval [CI], 1.34 to 3.94; P = 0.002). There were 21 deaths from cardiovascular causes in the dronedarone group and 10 in the placebo group (hazard ratio, 2.11; 95% CI, 1.00 to 4.49; P = 0.046), including death from arrhythmia in 13 patients and 4 patients, respectively (hazard ratio, 3.26; 95% CI, 1.06 to 10.00; P = 0.03). Stroke occurred in 23 patients in the dronedarone group and 10 in the placebo group (hazard ratio, 2.32; 95% CI, 1.11 to 4.88; P = 0.02). Hospitalization for heart failure occurred in 43 patients in the dronedarone group and 24 in the placebo group (hazard ratio, 1.81; 95% CI, 1.10 to 2.99; P = 0.02). CONCLUSIONS: Dronedarone increased rates of heart failure, stroke, and death from cardiovascular causes in patients with permanent atrial fibrillation who were at risk for major vascular events. Our data show that this drug should not be used in such patients. (Funded by Sanofi-Aventis; PALLAS ClinicalTrials.gov number, NCT01151137.) Copyright © 2011 Massachusetts Medical Society. All rights reserved.published_or_final_versio

    Dengue Virus Infection of the Aedes aegypti Salivary Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding Behavior

    Get PDF
    The female Aedes aegypti salivary gland plays a pivotal role in bloodmeal acquisition and reproduction, and thereby dengue virus (DENV) transmission. It produces numerous immune factors, as well as immune-modulatory, vasodilatory, and anti-coagulant molecules that facilitate blood-feeding. To assess the impact of DENV infection on salivary gland physiology and function, we performed a comparative genome-wide microarray analysis of the naïve and DENV infection-responsive A. aegypti salivary gland transcriptomes. DENV infection resulted in the regulation of 147 transcripts that represented a variety of functional classes, including several that are essential for virus transmission, such as immunity, blood-feeding, and host-seeking. RNAi-mediated gene silencing of three DENV infection-responsive genes - a cathepsin B, a putative cystatin, and a hypothetical ankyrin repeat-containing protein - significantly modulated DENV replication in the salivary gland. Furthermore, silencing of two DENV infection-responsive odorant-binding protein genes (OBPs) resulted in an overall compromise in blood acquisition from a single host by increasing the time for initiation of probing and the probing time before a successful bloodmeal. We also show that DENV established an extensive infection in the mosquito's main olfactory organs, the antennae, which resulted in changes of the transcript abundance of key host-seeking genes. DENV infection, however, did not significantly impact probing initiation or probing times in our laboratory infection system. Here we show for the first time that the mosquito salivary gland mounts responses to suppress DENV which, in turn, modulates the expression of chemosensory-related genes that regulate feeding behavior. These reciprocal interactions may have the potential to affect DENV transmission between humans

    A Randomized Controlled Study of Parent-assisted Children’s Friendship Training with Children having Autism Spectrum Disorders

    Get PDF
    This study evaluated Children’s Friendship Training (CFT), a manualized parent-assisted intervention to improve social skills among second to fifth grade children with autism spectrum disorders. Comparison was made with a delayed treatment control group (DTC). Targeted skills included conversational skills, peer entry skills, developing friendship networks, good sportsmanship, good host behavior during play dates, and handling teasing. At post-testing, the CFT group was superior to the DTC group on parent measures of social skill and play date behavior, and child measures of popularity and loneliness, At 3-month follow-up, parent measures showed significant improvement from baseline. Post-hoc analysis indicated more than 87% of children receiving CFT showed reliable change on at least one measure at post-test and 66.7% after 3 months follow-up

    Glial Progenitor-Like Phenotype in Low-Grade Glioma and Enhanced CD133-Expression and Neuronal Lineage Differentiation Potential in High-Grade Glioma

    Get PDF
    Background: While neurosphere-as well as xenograft tumor-initiating cells have been identified in gliomas, the resemblance between glioma cells and neural stem/progenitor cells as well as the prognostic value of stem/progenitor cell marker expression in glioma are poorly clarified. Methodology/Principal Findings: Viable glioma cells were characterized for surface marker expression along the glial genesis hierarchy. Six low-grade and 17 high-grade glioma specimens were flow-cytometrically analyzed for markers characteristics of stem cells (CD133); glial progenitors (PDGFR alpha, A2B5, O4, and CD44); and late oligodendrocyte progenitors (O1). In parallel, the expression of glial fibrillary acidic protein (GFAP), synaptophysin and neuron-specific enolase (NSE) was immunohistochemically analyzed in fixed tissue specimens. Irrespective of the grade and morphological diagnosis of gliomas, glioma cells concomitantly expressed PDGFRa, A2B5, O4, CD44 and GFAP. In contrast, O1 was weakly expressed in all low-grade and the majority of high-grade glioma specimens analyzed. Co-expression of neuronal markers was observed in all high-grade, but not low-grade, glioma specimens analyzed. The rare CD133 expressing cells in low-grade glioma specimens typically co-expressed vessel endothelial marker CD31. In contrast, distinct CD133 expression profiles in up to 90% of CD45-negative glioma cells were observed in 12 of the 17 high-grade glioma specimens and the majority of these CD133 expressing cells were CD31 negative. The CD133 expression correlates inversely with length of patient survival. Surprisingly, cytogenetic analysis showed that gliomas contained normal and abnormal cell karyotypes with hitherto indistinguishable phenotype. Conclusions/Significance: This study constitutes an important step towards clarification of lineage commitment and differentiation blockage of glioma cells. Our data suggest that glioma cells may resemble expansion of glial lineage progenitor cells with compromised differentiation capacity downstream of A2B5 and O4 expression. The concurrent expression of neuronal markers demonstrates that high-grade glioma cells are endowed with multi-lineage differentiation potential in vivo. Importantly, enhanced CD133 expression marks a poor prognosis in gliomas
    corecore