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Abstract
Objective: Focal cortical dysplasia (FCD) is a major cause of difficult-to-treat epi-
lepsy in children and young adults, and the diagnosis is currently based on micro-
scopic review of surgical brain tissue using the International League Against Epilepsy 
classification scheme of 2011. We developed an iterative histopathological agreement 
trial with genetic testing to identify areas of diagnostic challenges in this widely used 
classification scheme.
Methods: Four web-based digital pathology trials were completed by 20 neuro-
pathologists from 15 countries using a consecutive series of 196 surgical tissue blocks 
obtained from 22 epilepsy patients at a single center. Five independent genetic labora-
tories performed screening or validation sequencing of FCD-relevant genes in paired 
brain and blood samples from the same 22 epilepsy patients.
Results: Histopathology agreement based solely on hematoxylin and eosin stainings 
was low in Round 1, and gradually increased by adding a panel of immunostainings 
in Round 2 and the Delphi consensus method in Round 3. Interobserver agreement 
was good in Round 4 (kappa = .65), when the results of genetic tests were disclosed, 
namely, MTOR, AKT3, and SLC35A2 brain somatic mutations in five cases and ger-
mline mutations in DEPDC5 and NPRL3 in two cases.
Significance: The diagnoses of FCD 1 and 3 subtypes remained most challenging 
and were often difficult to differentiate from a normal homotypic or heterotypic cor-
tical architecture. Immunohistochemistry was helpful, however, to confirm the di-
agnosis of FCD or no lesion. We observed a genotype–phenotype association for 
brain somatic mutations in SLC35A2 in two cases with mild malformation of cortical 
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1  |   INTRODUCTION

Etiology matters in the clinical management of patients with 
difficult-to-treat focal epilepsies.1,2 Epilepsy surgery has been 
established as a reliable treatment option in many of these pa-
tients,3,4 and the spectrum of structural brain lesions amena-
ble for surgical treatment is well described.5 Malformations 
of cortical development (MCDs) account for the most com-
mon surgical pathologies in children and the third most 
common in adults, with focal cortical dysplasia (FCD) repre-
senting almost 75% of all MCD cases.2,5 Postsurgical seizure 
outcomes vary considerably between various FCD subtypes. 
In a recent European multicenter study of 9147 epilepsy sur-
gery patients, FCD Type 1 and mild MCD (mMCD) showed 
the poorest outcome, whereas Type 2 FCDs were associated 
with much higher rates of long-term seizure freedom on and 
off antiseizure medications up to 5 years after surgery.2

FCD was first described in 1971,6 but its clinicopatho-
logical classification scheme remains a topic of ongoing dis-
cussion.7 FCD originally contained only cytoarchitectural 
dysplasia including cytomegalic neurons and balloon cells 
in an architecturally abnormal neocortex, for example, FCD 
2A or 2B in the current terminology. It was then extended 
to add a new category, frequently encountered in patients 
with epilepsy, that involves architectural abnormalities of the 
neocortex but lacking cytopathologic features,8 termed FCD 
Type 1 by the Palmini classification in 2004.9 Microscopic 
hallmarks of a reliable histopathological diagnosis of FCD 

Type 1 remained suboptimal10 and were revised in the in-
ternational FCD consensus classification scheme of 2011.11

This widely used International League Against Epilepsy 
(ILAE) classification further introduced FCD Type 3, 
wherein architectural abnormalities were associated with and 
adjacent to another principal lesion, for example, hippocam-
pal sclerosis (HS; FCD Type 3A), low-grade developmental 
brain tumors (FCD Type 3B), vascular malformations (FCD 
Type 3C), or any other lesion acquired during early life (FCD 
Type 3D). The foundation for this classification was laid by 
observations that patients with isolated (pure) FCD Type 1 
have a more severe clinical phenotype12,13 and may require 
more extensive resection or hemispheric disconnection pro-
cedures.4 In contrast, clinical phenotypes and postsurgical 
seizure outcome were not significantly different between pa-
tients with HS or other principal brain lesions with or without 
accompanying FCD.12 Microscopic intra- and interobserver 
agreement was tested for the 2011 ILAE classification ad-
dressing different levels of professional experience.14 Overall 
kappa values reached good levels, but the study also high-
lighted the need for continuous training and that FCD Type 1 
and 3 subtypes required further attention.

Challenges in interobserver agreement with respect to 
histopathological diagnosis are long-standing and occur not 
only in the arena of epilepsy surgery.15 In 2016, the World 
Health Organization Classification of Tumors of the Central 
Nervous System proposed a multilayered diagnostic scheme 
to address this issue by integrating genetic testing with 

development with oligodendroglial hyperplasia in epilepsy. Our results suggest that 
the current FCD classification should recognize a panel of immunohistochemical 
stainings for a better histopathological workup and definition of FCD subtypes. We 
also propose adding the level of genetic findings to obtain a comprehensive, reliable, 
and integrative genotype–phenotype diagnosis in the near future.

K E Y W O R D S

brain, classification, epilepsy, genes, neuropathology, seizure

Key Points
•	 We performed an iterative histopathological agreement trial with genetic testing to 

challenge the widely used ILAE classification scheme for FCD
•	 Twenty neuropathologists from 15 countries completed four digital pathology trials 

of 196 surgical tissue blocks obtained from 22 epilepsy patients
•	 Five independent laboratories performed genetic screening or validation sequenc-

ing of FCD-relevant genes in paired brain and blood samples from the same 22 
patients

•	 Interobserver agreement increased when immunohistochemistry was available and 
results of genetic tests were disclosed

•	 We propose adding the level of genetic findings to the ILAE classification scheme 
to obtain an integrative genotype–phenotype diagnosis in the near future
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the microscopic assessment.16 The integrated genotype–
phenotype classification of brain tumors significantly moved 
the field forward with more targeted therapies becoming 
available, despite the lack of resources for genetic testing in 
many regions of the world. A similar progress in FCD ge-
netics emerged, revealing that somatic and/or germline mu-
tations activating the mTOR–GATOR signaling pathway 
cause FCD Type 2.17–19 Also, somatic mutations in SCL35A2 
leading to aberrant N-glycosylation were reported in FCD 1 
or mMCD,20,21 which has recently been confirmed and as-
signed histopathologically to mild malformation of cortical 
development with oligodendroglial hyperplasia in epilepsy 
(MOGHE)22 in a collaborative series of 26 cases.23

To identify the challenges in clinical practice and improve 
the validity of FCD diagnoses we selected a single center 
(Cleveland Clinic, Cleveland, Ohio, USA) to access brain 

samples surgically resected from a group of highly charac-
terized patients with medically intractable focal epilepsies. 
These samples were histologically and immunohistochemi-
cally reviewed by a group of neuropathologists with experi-
ence in the diagnosis of epilepsy-related specimens through 
a web-based digital pathology platform. DNA extracted from 
resected brain tissue and peripheral blood from the same pa-
tients were genetically studied at five centers to assess the 
impact of a genotype–phenotype integration for the classifi-
cation of FCD.24,25

2  |   MATERIALS AND METHODS

Twenty-two consecutive cases were selected from the 
Cleveland Clinic Epilepsy Center Biorepository according to 

T A B L E  1   The 22 patients included in the study

Case Sex
Age at seizure 
onset, years

Age at surgery, 
years Localizationa  MRI RF iEEG

Outcome, 
Engelb 

FU, 
years

1 F 13 28 L Fr pos No SDG, icEEG IA 1.25

2 F 4 14 R T C pos DD icEEG IC 4.17

3 M 8 50 R Fr T pos FAM SDG, icEEG IA 4

4 F 13 25 L Fr pos TBI SDG, icEEG IA 1.17

5 M 9 19 R P pos FAM icEEG II 2.5

6 F 17 27 L T neg TBI icEEG IV 2.25

7 M 5 16 L Fr pos FAM icEEG + ECoG II 1.58

8 M 49 53 L T neg TBI icEEG + ECoG IA 1

9 M 36 49 L T pos Npl No III 1

10 F 22 44 L T pos No No IA 1.33

11 F 4 26 R T C pos TBI No IA 1.08

12 M .8 8 L Fr pos DD icEEG + ECoG n.a. .17

13 F 0 37 R P pos BIRTH icEEG III 4.75

14 F 2 39 L T pos DD icEEG IA .25

15 F 23 34 R T C neg FS No IA .5

16 F 6 28 L Fr pos No icEEG IA .58

17 F 20 28 R Fr T pos TBI icEEG IA .75

18 F 5 24 R P O pos No SDG + ECoG II 1

19 F 25 42 R T C pos FS No IA 1.08

20 F 5 17 R Fr T pos BIRTH icEEG + ECoG IB .58

21 M 2.5 19 L Fr pos No ECoG IA .42

22 F .3 19 R T P O pos DD SEEG IVc  n.a.d 

Note: Overview of 22 consecutive patients, who met the inclusion criteria.
Abbreviations: BIRTH, perinatal stroke; C, central; DD, developmental delay; ECoG, electrocorticography; EEG, electroencephalography; F, female; FAM, family 
history of seizures; Fr, frontal; FS, febrile seizure; FU, postsurgical follow-up period; icEEG, intracerebral EEG; iEEG, invasive EEG; L, left; M, male; MRI, magnetic 
resonance imaging; n.a., not available; neg, negative; Npl, neoplasia; O, occipital; P, parietal; pos, positive; R, right; RF, risk factors; SDG, subdural grids; SEEG, 
stereo-EEG; T, temporal; TBI, traumatic brain injury.
aBrain localization of surgery.
bPostsurgical outcome using Engel scale.
cEngel Class IV outcome with elimination of drop attacks after previous surgery in outside hospital.
dNo follow-up data available after last surgery at the Cleveland Clinic Epilepsy Center.
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the following inclusion criteria: (1) presurgical evaluation and 
patient management conference protocols suggested a disease 
etiology within the spectrum of FCD; (2) formalin-fixed and 
paraffin-embedded (FFPE) surgical specimens were available 
for microscopic re-evaluation and immunohistochemistry, if re-
quested (see below); (3) fresh frozen surgical brain samples and 
a matched blood sample would be available for DNA extrac-
tion and genetic testing; (4) the selection period included years 
2018 and earlier to allow for postsurgical follow-up; and (5) all 
patients had provided informed consent for the scientific use of 
their biomaterials (Table 1). The use of biorepository tissues 
and the study protocol were approved by the Cleveland Clinic 
Institutional Review Board (IRB#18-1134), the institutional 
review boards of Boston Children's Hospital, the Committee 
for the Protection of Persons Ile de France II (No. ID-RCB/
EUDRACT-2015-A00671-48) registered on ClinicalTrials.
gov (No. NCT02890641), and the Korea Advanced Institute 
of Science and Technology Institutional Review Board and 
Committee on Human Research.

2.1  |  First and second agreement 
trials (hematoxylin and eosin vs. 
immunohistochemistry)

Thirty-five neuropathologists from 18 countries were in-
vited to review the series of 22 cases. A total of 196 he-
matoxylin and eosin (H&E)-stained FFPE tissue blocks 
and their H&E-stained sections were retrieved from the 
pathology archives of the Cleveland Clinic. Whole slide 
images (WSIs) were digitally scanned using Aperio 
ScanScope (Leica). All WSIs were uploaded into the open 
microscopy environment platform for secured web-based 
access (OMERO.web, University of Dundee). Each case 
included a short description of the patient's age at surgery, 
age at seizure onset, whether a lesion was visible by mag-
netic resonance imaging (MRI), and lobe localization for 
brain surgery. All reviewers were asked in an open text 
format to (1) identify the FFPE tissue block with best vis-
ible abnormalities; (2) indicate which, if any, additional 

T A B L E  2   Requested immunostains

Case NeuN GFAP MAP2 NFL SYN VIM αBC CDs O2 Other

1 x x x x x x CV-LFB

2 x x x x x CV-LFB

3 x x x x x x CV-LFB

4 x x x x x CV-LFB

5 x x x x x x CV-LFB

6a  x x x x CV-LFB

7a  x x x x x x x Ki67

8 x x x x x 68 Ki67

9a  x x x x x IDH1

10a  x x x x 3 CV-LFB

11a  x x x x CV-LFB

12 x x x x x x x Ki67

13 x x x x CV-LFB

14 x x x x CV-LFB

15a  x x x x 3 CV-LFB

16 x x x x x x CV-LFB

17a  x x x x 3 Ki67

18 x x x x x CV-LFB

19a  x x x x x CV-LFB

20 x x x x x x 68 PB

21 x x x x x x x 68 Ki67

22 x x x x x x x 68 PB

Note: Case identification numbers are the same as used in Table 1. Specific stainings were prepared as indicated (x).
Abbreviations: CDs, T-cell marker CD3 (MRQ-39; Cell Marque); CV-LFB, cresyl violet–Luxol fast blue (Sigma); GFAP, glial fibrillary acidic protein (Dako 
Cytomation); IDH1, R132H point mutation-specific antibody (clone H09; Dianova); Ki67, proliferation marker (clone MIB-1; Cell Marque); MAP2, microtubule-
associated protein 2 (clone HM2; Dako); NeuN, neuronal nuclei (clone A60; Millipore); NFL, nonphosphorylated neurofilament protein (clone SMI32; BioLegend); 
O2, oligodendroglial marker protein Olig2 (JP18953; IBL International); PB, Prussian blue (Merck); SYN, synaptophysin (SP11; Thermo Fisher Scientific); VIM, 
vimentin (SP20; Thermo Fisher Scientific); αBC, heat shock protein αB-crystallin (ADI-SPA-223; Enzo).
aIn these eight cases, more than one formalin-fixed and paraffin-embedded block was requested for special stainings.

http://OMERO.web
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immunostainings they would need; and (3) submit a pro-
visional diagnosis. Twenty-four neuropathologists submit-
ted their reports within the given time limit of 6  weeks. 
None of the reviewers had access to the results of other 
reviewers. The OMERO.web administrator, who is a sen-
ior pathologist neither experienced in epilepsy surgery nor 
enrolled in this survey, retrieved and forwarded all answers 
pseudonymously to the study coordinator. Requested im-
munostainings (see Table 2) were prepared from blocks 
with most votes using a semiautomated immunostainer 
(Ventana Ultra), digitally scanned and uploaded onto the 
OMERO.web platform. After a 3-month interval, the same 
group of 24 participants was invited to rereview the case se-
ries including requested immunostainings. Twenty review-
ers submitted their final diagnosis within a 6-week time 
period. Interobserver agreement was calculated by kappa 
coefficient analysis.26 Kappa values are always equal to 1 
or less. In our study, kappa values were interpreted as fol-
lows: <.2, slight; .2–<.4, fair; .4–<.6, moderate; .6–<.8, 
substantial/good; .8–<1.0, very good/perfect.27

2.2  |  Third and fourth agreement trials 
(Delphi consensus and gene panel analysis)

In a third agreement trial, we applied the Delphi method 
to build consensus.28,29 All answers of the first and sec-
ond agreement trials were pseudonymously disclosed to 
the 20 colleagues who completed both previous rounds. 
Answers were assembled with (1) histopathological land-
mark images from selected FFPE blocks and requested 
immunostainings; and (2) a summary of clinical informa-
tion including preoperative MRI findings, postsurgical 
outcome, information about invasive diagnostic evalua-
tion, and potential epilepsy risk factors (Table 1). All re-
viewers were invited to answer an online survey evaluation 
form (the open access LimeSurvey application) and choose 
a final diagnosis from the list of all previously submitted 
diagnoses. The OMERO.web platform remained open for 
microscopy review during the entire period. All 20 col-
laborators submitted their Delphi consensus survey within 
6  weeks, and interobserver agreement was calculated by 
kappa coefficient analysis. In December 2019, the Task 
Force convened at a group meeting to discuss all previ-
ous results. Histopathology patterns were reviewed for all 
cases, regardless of whether consensus agreement had been 
achieved. Commentaries were prepared to inform the re-
viewers when anatomical landmarks or clinical histories 
were perceived as important for the differential diagnosis 
(Figure S1). The same group of 20 participants was invited 
to a second, and final, Delphi consensus trial using a simi-
lar LimeSurvey questionnaire, which included all previous 
answers from the third round, assembled with histology 

images and the glossary mentioned above. FCD gene panel 
results collected from four different laboratories became 
available at this time and were also disclosed to the review-
ers. All reviewers submitted their final diagnosis within 
8 weeks. Interobserver agreement was calculated by kappa 
coefficient analysis. Please see Figure 1 for an overview of 
the study design.

2.3  |  Deep targeted sequencing analysis of 
FCD-relevant genes

DNA extracted from snap-frozen surgical brain tissue and 
matched blood samples of 22 patients were sent to five 
genetic laboratories. Each group performed an independ-
ent analysis with hybrid capture sequencing targeting 
their own set of FCD-relevant genes (Table S1). Genetic 
results from four of the five laboratories were available 
for the final round of reviews. In Lab A (Daejeon), techni-
cal replication of deep sequencing targeting of 13 genes 
was performed (SoVarGen). Analysis for replicated data 
was performed in accordance with a previous study.18 
The RePlow variant caller was applied for somatic mu-
tations.30 After a filtering process, all candidate variants 
were validated using targeted amplicon sequencing (Miseq 
Dx sequencer; Illumina). Germline mutations were ana-
lyzed in a similar pipeline as Genome Analysis Toolkit 
(GATK)'s best practices. In Lab B (Paris Brain Institute), 
libraries were prepared and sequenced as previously de-
scribed,19 using a targeted panel of 57 genes (Twist 
Bioscience). Brain somatic variants at low variant allele 
frequency were validated by droplet digital polymerase 
chain reaction (ddPCR) as previously described; ddPCR 
Mutation Detection Assays (FAM + HEX) were purchased 
from Bio-Rad Laboratories to detect the MTOR variant 
p.Thr1977Lys and AKT3 variant p.Glu17Lys. For Lab C 
(Campinas), a hybrid capture panel was used. Four bioin-
formatics algorithms were used (Mutect231 from GATK, 
Strelka2,32 VarScan,33 and Somatic Sniper34; see codes 
used for bioinformatic analysis in Appendix S1). In Lab 
D (Boston) a custom double-stranded molecular inversion 
probe (MIP) panel was used covering 18 FCD-relevant 
genes (see Table S1). For the MIP design, custom scripts 
incorporating the MipGen tool were generated that allowed 
for dense tiling of all exons and up to 60  bp of flanking 
intronic regions, and putative splicing regulators for all 
genes. All 33 183 unique MIPs were designed to include 
a custom backbone consisting of primer binding sites and 
a dual 8-nt unique molecular index (UMI). MIP were re-
balanced in the pool based on the percent of GC content 
within the regions. MIP pool was amplified with low cycles 
(17 cycles), high-fidelity polymerase, and custom com-
mon primers, allowing for large quantities to be generated. 
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Captured products were amplified using 15 cycles of PCR 
with dual 8-nt indexing primers and sequenced on the 
Illumina HiSeq platform with 1 × 150-bp paired end reads. 
All regions were sequenced to a minimum of ×1000 cov-
erage, allowing for accurate assessment of somatic alleles 
down to .5% alternate allele frequency. Raw sequencing 
data were analyzed using existing in-house pipelines that, 
briefly, include quality assessment, mapping using BWA-
mem, UMI-collapsing, additional trimming, and local 
realignment. Finally, variants were called using multiple 
calling algorithms including Mutect2 and CLC Genomics' 
Low-Frequency algorithm. Lab E (Amsterdam) carried out 
additional validation of somatic single nucleotide variants 
(SNVs) using a dedicated custom Ion AmpliSeq FCD next 
generation sequencing (NGS) panel and ddPCR for MTOR 

and AKT3 variants in Cases 3, 12, 14, 16, 21, and 22 (Table 
3; results from individual centers are summarized in Tables 
S2–S6).

3  |   RESULTS

Twenty reviewers completed the four histopathological agree-
ment trials, and 1760 answers were collected for the analysis 
(Figure S2). In the first round, which was based on 196 H&E 
stainings, the interobserver agreement was low, with a kappa 
value of .16. Two cases of FCD 2B were agreed upon by more 
than 75% of reviewers (2/22 = 9%). An additional 11 cases 
only reached a majority vote (defined as simple majority) for 
the diagnosis, as finally agreed upon after the fourth round. 

F I G U R E  1   Summary of the four rounds of histopathology agreement. The color coding of pie charts was applied as follows (plain colors for 
cases with final agreement, shaded colors for cases without agreement; see Figure S1 for more details): gray, focal cortical dysplasia (FCD) 1A, 1B, 
1C; green, FCD 2A, 2B; blue, associated FCD Type 3A, 3B, 3C, and 3D; red, no FCD and/or no lesion; yellow, lesions of the white matter (WM; 
mild malformation of cortical development [MCD] with oligodendroglial hyperplasia in epilepsy defined as oligodendroglial hyperplasia and mild 
MCD defined as excessive neurons in the WM); purple, MCD, including polymicrogyria, nodular heterotopia, tuberous sclerosis complex; brown, 
undetermined (undet.). Please note the increase of plain colors from Round 1 to Round 4. Only hematoxylin–eosin (HE) staining was available 
during Round 1. Immunohistochemistry (IHC) was available during Rounds 2–4. The Delphi consensus method, that is, informed decision based on 
anonymous disclosure of all previous results, was introduced in Round 3. Results of magnetic resonance imaging review and gene panel sequencing 
were made available for Round 4
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We added 10 different antibody stainings to the second round 
(Table 2), which yielded >75% agreement in two additional 
cases of FCD 2B and two cases of FCD 2A (6/22 = 27%). 
This resulted in an improvement of the interobserver agree-
ment to “fair” (kappa value of .35). The Delphi consensus 
method was applied in the third round and reached a moderate 
interobserver agreement, with a kappa value of .5. Diagnosis 
for nine cases was agreed upon by more than 75% of review-
ers (41%), seven of which were FCD Type 2A or 2B. An 
agreement was reached by more than 75% of reviewers for 14 
cases in the fourth round (64%). An agreement was reached 
for all subtypes of FCD 2, polymicrogyria, FCD 3 associated 
with perinatal stroke (FCD Type 3D), MOGHE, and a case 
with no lesion on MRI and histopathologically. The overall 
kappa value of .68 was “substantial.” Simple majority votes 
without consensus agreement were obtained for FCD Type 
1A, an MRI-negative mMCD, and an MRI-negative nonle-
sional case, as well as four cases with a principal lesion and no 
associated FCD (three with HS and one with a tumor).

Eight cases finally achieved a consensus agreement for 
FCD Type 2A and 2B (n = 4 each); 86.7% of all FCD Type 
2 diagnostic labels were already assigned to these eight cases 
in the first round, and this increased to 97.5% in the fourth 
round. Results differed in FCD Type 1. Only 20% of all FCD 
Type 1 labels were assigned in the first round to Case 5, which 
received the final majority vote for FCD Type 1A (Figure 2H). 
FCD Type 1 labels were scattered among all other cases and 
represented a common differential diagnosis for mMCD.

FCD Type 3 labels represented 14.3% of all answers in 
the first round, which increased to 17.5% in Round 2 and 

20.5% in Round 3 (Figure 1, Figure S2). FCD 3A was the 
most frequent differential diagnosis in all cases with HS, rep-
resenting 33% of all answers in the first, 50% in the second, 
and 56% in the third round. A Task Force group meeting was 
organized to clarify common patterns of FCD Type 3A rec-
ognized by the current ILAE classification scheme and pro-
vided as a commentary to the reviewers. In the fourth round, 
only 28% of answers selected FCD 3A in cases with HS and 
all cases reached a majority vote for “HS without FCD Type 
3A” (Figure S2). Instead, 61.6% of all FCD 3 labels in Round 
4 were assigned to both cases with the final diagnosis of FCD 
3D (Figure 2J).

Only 4.7%–8.8% of all answers specified mMCD, which 
is defined as excessive (heterotopic) neurons in the white 
matter.9 Another lesion preferentially affecting the white mat-
ter was mMCD with oligodendroglial hyperplasia, for exam-
ple, MOGHE, which also showed heterotopic neurons in the 
white matter,22 and collected 3.5%–7% of all answers. Based 
on consensus diagnosis, two cases reached the final agree-
ment of MOGHE (Figure 2D). Interestingly, both cases re-
vealed a somatic brain mutation for the SLC35A2 gene (Table 
3). The widespread distribution of diagnostic MOGHE labels 
observed during Rounds 1–3 collated to the two SLC35A2 
mutant cases after disclosure of the genetic information in 
the fourth round. The same holds true for one case with poly-
microgyria, which was difficult to identify in the oblique cut-
ting plane of the neocortical specimen. A germline NPRL3 
mutation was detected in blood and tissue and the diagnosis 
reached agreement status in the fourth round, as already sug-
gested by a majority after the second round.

T A B L E  3   Summary of consensus genetic findings validated by independent laboratories

Case Diagnosisa  Geneb 
Amino acid 
change

Lab A (hybrid 
capture), 
brainc /bloodd 

Lab B, (hybrid 
capture), 
brainc /bloodd 

Lab C (hybrid 
capture), 
brainc /bloodd 

Lab D (MIP), 
brainc /bloodd 

Lab E 
(validation), 
brainc /bloodd 

3 FCD 2A DEPDC5 p.Arg874* 46.6%/53.3% 48%/47% 51%/51.1% 19%/39.5% 49.9%/54%

14 FCD 2B MTOR p.Thr1977Lys .3%/.01% .4%/0% .4%/0% 2.8%/.02% .3%/nd

22 FCD 2A MTOR p.Ser2215Tyr .6%/.02% 1.1%/0% 1.1%/.3% nd .6%/nd

21 FCD 2A AKT3 p.Glu17Lys 1%/0% .2%/0% .5%/0% nd .9%/nd

16 PMG NPRL3 p.Ala384fs 47.6%/50% 50%/50% 57.7%/42.8% nd 47.2%/49.2%

12 MOGHE SLC35A2 p.Cys210Tyr 51.4%/0% 37%/0% nd nd 40.1%/nd

17 MOGHE SLC35A2 p.Pro15Thr 5.1%e /0% nd nd 3.3%/0% nd/nd

Note: Case identification numbers are the same as used in Table 1.
Abbreviations: FCD, focal cortical dysplasia; MIP, molecular inversion probe; MOGHE, mild malformation of cortical development with oligodendroglial hyperplasia 
in epilepsy; nd, not detected due to low coverage or absence of the gene in the targeted panel; PMG, polymicrogyria.
aFinal histopathology diagnosis after the fourth round.
bDEPDC5 transcript ID: NM_001242896, MTOR transcript ID: NM_004958, AKT3 transcript ID: NM_005465, NPRL3 transcript ID: NM_001077350, SLC35A2 
transcript ID: NM_005660.
cVariant allele frequency detected in DNA from fresh frozen surgical brain sample.
dVariant allele frequency detected in DNA from a peripheral blood draw.
eMutation-negative in bulk frozen tissue, but mutation-positive in pathologically reviewed formalin-fixed and paraffin-embedded tissue samples.
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All genetic laboratories independently performed genetic 
analysis of somatic and germline mutations in FCD-relevant 
genes (Table S1). To detect low-frequency somatic muta-
tions, high-depth hybrid capture sequencing of FCD-relevant 
genes was performed (>×1000 read depth), followed by 
comprehensive bioinformatic analysis as described in the 
Materials and Methods section. All somatic and germline 
mutations were validated by alternative sequencing methods 
including target-specific amplicon sequencing, ddPCR, and 
Sanger sequencing. Most laboratories reproducibly found so-
matic brain SNVs in MTOR, AKT3, and SLC35A2 in four pa-
tients and germline mutations in DEPDC5 and NPRL3 in two 
patients. Six panel-negative cases with a histopathologically 
verified lesion after the third histopathology review (Cases 
1, 4, and 18 with FCD 2B, Case 2 with FCD 2A, Case 5 
with FCD 1A, and Case 17 with MOGHE) were subjected 

to a second round of genetic testing using DNA extracted 
from FFPE slides of a paraffin block containing the lesion. 
In this study, a new somatic brain mutation was identified in 
SLC35A2 in Case 17 with MOGHE. As a result, genetic tests 
of FCD-relevant genes performed by independent laborato-
ries identified genetic causes in seven of 22 (31.8%) patients 
including five of 22 (22.7%) patients with somatic brain mu-
tations and two of 22 (9%) patients with germline mutations.

4  |   DISCUSSION

Despite the ubiquitous use of the international consensus 
classification of FCD in research and clinical practice, the 
histopathological characterization of FCD subtypes remains 
a matter of ongoing debate.7 The presented results show 

F I G U R E  2   Illustrative cases of the patient series. (A) Patient 3 with focal cortical dysplasia (FCD) Type 2A and DEPDC5 germline mutation. 
The arrow in the fluid-attenuated inversion recovery (FLAIR) image points to a lesion and site of surgical resection. (B) Surgical specimen A7 with 
an area of dysmorphic neurons (arrow) as further magnified in C (immunostain against nonphosphorylated neurofilaments with antibody SMI32) 
NCx = neocortex. (D) Patient 12 with mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy and SLC35A2 
brain somatic mutation. The arrow in the FLAIR image points to a lesion and site of surgical resection. (E) Oligodendrocyte lineage transcription 
factor 2 (Olig2) immunohistochemistry revealed increased cell density at the gray–white matter border (arrow). (F) Oligodendroglial hyperplasia 
(arrow) visible at high-power magnification. Please compare the region of high cell density (arrow) with a region of deep white matter and normal 
oligodendroglial cell density (asterisk). (G) Patient 5 with FCD 1A. The arrow in the T2 image points to a lesion and site of surgical resection. 
(H) NeuN immunohistochemistry revealed a predominant microcolumnar architecture of the neocortex (arrow). (I) Patient 20 with FCD Type 3D. 
The arrow in the FLAIR image points to a lesion and site of surgical resection. (J) Nodules of neurons (arrow) were embedded in a glial scar as a 
hallmark of FCD Type 3D in this patient with perinatal stroke. Scale bar in C = 250µm, in F = 500µm and J = 2.5 mm.

(A) (B) (C)

(D) (E) (F)

(G) (H) (J)(I)
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that the diagnosis of (1) FCD Type 2 subtypes can be im-
proved using a selected protocol of immunostains, for ex-
ample, NeuN, nonphosphorylated neurofilament, vimentin, 
and microtubule-associated protein 2 (Table 2) and genetic 
tests18; (2) FCD Type 1 and 3 subtypes remain difficult to dif-
ferentiate from the normal variation in cortical architecture, 
particularly in the temporal lobe; (3) new clinicopathologi-
cal and genetically defined subtypes can be recognized and 
should be added to the current FCD classification scheme.

Overall, there was 80% accuracy in identifying the eight 
FCD 2 cases of this series. However, an agreement was 
achieved in only two cases (25%) when the diagnosis was 
based solely on H&E sections. This number increased to six 
cases (75%) when a panel of immunohistochemical stainings 
was provided, as recommended by an ILAE Task Force in 
2016.35 NeuN staining was most helpful in deciphering the 
six-layered architecture of the neocortex. This highlighted the 
value of NeuN immunohistochemistry for routine application 
in order not to overlook focal regions of dysplasia in large 
resection specimens. NeuN immunoreactivity also helped to 
anticipate the regional variability of the laminar neuroana-
tomical organization (Figure S1). Antibodies directed against 
nonphosphorylated neurofilaments (SMI3236) are sensitive 
markers to identify dysmorphic neurons in all FCD 2 sub-
types, and dense accumulation of neurofilaments in large cell 
bodies of up to 50 µm diameter must be considered pathogno-
monic. Of note, SMI32 labeling remains weak in the normal 
neocortex of children and young adults but increases with 
age.37 Vimentin or αB-crystallin were frequently requested 
to confirm the presence of balloon cells in FCD Type 2B. 
However, both antibodies also label reactive astrocytes. Their 
distinction from vimentin- or αB-crystallin-positive balloon 
cells can be challenging, therefore, whereas balloon cells do 
not exhibit cellular processes or end feet extending toward 
capillaries.

Consistent with previous genetic studies of FCD, patho-
genic somatic and germline mutations in mTOR or GATOR 
pathway genes were identified only in FCD Type 2.17–19 
Interestingly, we observed a pathogenic germline DEPDC5 
mutation in one case of FCD Type 2A. DEPDC5 muta-
tions have been assigned mostly to FCD Type 2A19,38–40 but 
were also reported in other FCD subtypes.41 In the case of 
DEPDC5, a repressor of the mTOR pathway, a second-hit 
somatic mutation has been shown to lead to the development 
of dysmorphic neurons in the dysplastic lesion.20,42 This sec-
ond hit is yet to be identified in Cases 3 and 16, however. 
Regarding the laboratory requirements for the reliable de-
tection of low-level somatic mutations implicated in FCD, 
our result suggested that FCD genetic tests require (1) hy-
brid capture and high-depth NGS sequencing (>×1000 read 
depth) of FCD-relevant genes; (2) the use of somatic muta-
tion callers, for example, MuTect2, Replow, and Strelka2; 
and (3) the validation sequencing of candidate variations 

using orthogonal technology, for example, ddPCR or target 
site-specific amplicon sequencing. Although genetic test-
ing of somatic and germline mutations for FCD is not yet 
available in most pathology laboratories, it is important in-
formation for the genetic consultation whether FCD patients 
carry pathogenic somatic (not inherited, not transmissible) or 
germline (inherited and transmissible) variants. A hyperacti-
vated mTOR kinase due to somatic or germline mutations in 
FCD Type 2 is also a promising candidate for targeted drug 
treatment of mTOR inhibitor (ClinicalTrials.gov identifier 
NCT03198949).43 Thus, genetic diagnosis will be helpful 
and add an objective measure for an integrated diagnosis of 
FCD, thereby better stratifying the patient cohort, advancing 
our knowledge about the underlying disease pathomecha-
nism, and promoting personalized medicine in epileptology.

MOGHE is a recently described new entity observed in 
young children with early onset and difficult-to-treat frontal 
lobe epilepsy, and histopathologically defined by oligoden-
droglial hyperplasia and heterotopic neurons in the shallow 
subcortical white matter.22,44 There was a majority vote from 
only 23% of reviewers in the first and second rounds for Cases 
12 and 17. The Delphi process assisted most reviewers in rec-
ognizing this entity. Surprisingly, SLC35A2 somatic variants 
were identified in both MOGHE cases. MOGHE neuropa-
thology has only recently been associated with SLC35A2 
mutations in an unprecedented cohort of 26 cases23 including 
those SLC35A2 mutated cases previously published in the lit-
erature as mMCD or FCD Type 1.19–21,45 Both differentials 
were also commonly assigned to MOGHE cases in our study. 
We suggest, however, recognizing MOGHE diagnosis by the 
ILAE consensus classification scheme as a specific disease 
entity preferentially affecting the white matter (Table 4).

FCD 1 subtypes pose a major challenge in clinical prac-
tice.7,13,46 Their histopathological hallmarks comprise a large 
spectrum of horizontal or vertical abnormalities of the six-
layered neocortex.11 The human neocortex reveals differ-
ent architectural patterns across the cortical ribbon (Figure 
S1), which are cytologically classified into 52 Brodmann 
areas.47 However, it is almost impossible to recognize these 
Brodmann areas on a thin H&E-stained section obtained from 
an epilepsy surgery tissue sample. Clinical data, as well as 
knowledge of the cortical region resected, are essential when 
considering FCD Type 1 diagnoses. We finally agreed, there-
fore, that FCD Type 1 was unlikely in Patient 8, in whom 
seizures started after a motor vehicle accident at age 49 years 
(Table 1), and who received 15%–20% of all FCD Type 1 
votes in Rounds 1, 2, and 3. In contrast, histopathologically 
well-documented patients with FCD Type 1A were reported 
to have early seizure onset, daily seizures, and a developmen-
tal delay.13,46

The FCD Type 3 subgroup presented another diagnostic 
challenge during this agreement trial. The ILAE classification 
has specified several histopathology patterns and conditions 
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for this FCD category. A pattern of temporal lobe sclerosis as 
defined by neuronal cell loss and astrogliosis in neocortical 
Layers 2 and 3 in patients with HS has been assigned to FCD 
Type 3A.11 Lentiform heterotopias in the white matter of pa-
tients with HS49 was also assigned to FCD 3A. It came as no 
surprise, therefore, that 65% of reviewers recognized these 
lentiform heterotopias in Patient 11 as FCD Type 3A (Figure 
S1). However, neuroanatomists would classify lentiform het-
erotopias as part of the ventral claustrum, fragmented by fi-
bers of the fasciculus uncinatus,54 which frequently extend 
into the whiter matter of the superior temporal gyrus, an area 
often included in the surgical resection for epilepsy. This in-
formation was disclosed to our reviewers in Round 4, and the 
final majority vote was HS, no FCD.

In addition, this agreement study highlighted cases where 
no FCD was reported despite focal epilepsy and subtle fea-
tures on MRI; "no FCD" was used in 10% in Round 1, 13% 
in Round 2, and 12% in Round 3, and was finally assigned by 
70% of the reviewers to Case 8 and 85% of the reviewers to 
Case 15. We propose that "no FCD" should be incorporated 
into the diagnostic framework of the international FCD clas-
sification scheme (Table 4). It needs to be recognized that 
even where dysplastic cortical lesions are suspected on MRI 
(or quantitative MRI) there may not be a confident FCD diag-
nosis possible within the current limitations of histology and 
genetic analysis. Acknowledging this option may reduce any 
tendency to overdiagnose, particularly the FCD 1 and FCD 
3 subtypes.

In conclusion, the international FCD classification 
scheme is widely accepted in research and clinical practice 
and is helpful in stratifying clinicopathological disease con-
ditions. Inclusion of newly recognized disease categories, a 
better definition of histopathological features, and genotype 
integration will help to improve the reliability of diagnosing 
FCD. This may also stimulate our research efforts into elu-
cidating disease pathomechanisms and the development of 
targeted therapies.
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