49 research outputs found

    Advanced Optical Imaging-Guided Nanotheranostics toward Personalized Cancer Drug Delivery

    Get PDF
    Nanomedicine involves the use of nanotechnology for clinical applications and holds promise to improve treatments. Recent developments offer new hope for cancer detection, prevention and treatment; however, being a heterogenous disorder, cancer calls for a more targeted treatment approach. Personalized Medicine (PM) aims to revolutionize cancer therapy by matching the most effective treatment to individual patients. Nanotheranostics comprise a combination of therapy and diagnostic imaging incorporated in a nanosystem and are developed to fulfill the promise of PM by helping in the selection of treatments, the objective monitoring of response and the planning of follow-up therapy. Although well-established imaging techniques, such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET) and Single-Photon Emission Computed Tomography (SPECT), are primarily used in the development of theranostics, Optical Imaging (OI) offers some advantages, such as high sensitivity, spatial and temporal resolution and less invasiveness. Additionally, it allows for multiplexing, using multi-color imaging and DNA barcoding, which further aids in the development of personalized treatments. Recent advances have also given rise to techniques permitting better penetration, opening new doors for OI-guided nanotheranostics. In this review, we describe in detail these recent advances that may be used to design and develop efficient and specific nanotheranostics for personalized cancer drug delivery. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Enzyme Purification Improves the Enzyme Loading, Self-Propulsion, and Endurance Performance of Micromotors

    Get PDF
    Enzyme-powered micro- and nanomotors make use of biocatalysis to self-propel in aqueous media and hold immense promise for active and targeted drug delivery. Most (if not all) of these micro- and nanomotors described to date are fabricated using a commercially available enzyme, despite claims that some commercial preparations may not have a sufficiently high degree of purity for downstream applications. In this study, the purity of a commercial urease, an enzyme frequently used to power the motion of micro- and nanomotors, was evaluated and found to be impure. After separating the hexameric urease from the protein impurities by size-exclusion chromatography, the hexameric urease was subsequently characterized and used to functionalize hollow silica microcapsules. Micromotors loaded with purified urease were found to be 2.5 times more motile than the same micromotors loaded with unpurified urease, reaching average speeds of 5.5 μm/s. After comparing a number of parameters, such as enzyme distribution, protein loading, and motor reusability, between micromotors functionalized with purified vs unpurified urease, it was concluded that protein purification was essential for optimal performance of the enzyme-powered micromotor

    Nanoscale Mapping of Recombinant Viral Proteins: From Cells to Virus-Like Particles

    Get PDF
    Influenza recombinant proteins and virus-like particles (VLPs) play an important role in vaccine development (e.g., CadiFluS). However, their production from mammalian cells suffers from low yields and lack of control of the final VLPs. To improve these issues, characterization techniques able to visualize and quantify the different steps of the process are needed. Fluorescence microscopy represents a powerful tool able to image multiple protein targets; however, its limited resolution hinders the study of viral constructs. Here, we propose the use of super-resolution microscopy and in particular of DNA-point accumulation for imaging in nanoscale topography (DNA-PAINT) microscopy as a characterization method for recombinant viral proteins on both cells and VLPs. We were able to quantify the amount of the three main influenza proteins (hemagglutinin (HA), neuraminidase (NA), and ion channel matrix protein 2 (M2)) per cell and per VLP with nanometer resolution and single-molecule sensitivity, proving that DNA-PAINT is a powerful technique to characterize recombinant viral constructs

    Dielectric Imaging of Fixed HeLa Cells by In-Liquid Scanning Dielectric Force Volume Microscopy

    Get PDF
    Mapping the dielectric properties of cells with nanoscale spatial resolution can be an important tool in nanomedicine and nanotoxicity analysis, which can complement structural and mechanical nanoscale measurements. Recently we have shown that dielectric constant maps can be obtained on dried fixed cells in air environment by means of scanning dielectric force volume microscopy. Here, we demonstrate that such measurements can also be performed in the much morechallenging case of fixed cells in liquid environment. Performing the measurements in liquid media contributes to preserve better the structure of the fixed cells, while also enabling accessing the local dielectric properties under fully hydrated conditions. The results shown in this work pave the way to address the nanoscale dielectric imaging of living cells, for which still further developments are required, as discussed here

    Super-resolution microscopy reveals significant impact of M2e-specific monoclonal antibodies on influenza A virus filament formation at the host cell surface

    Get PDF
    Influenza A virions are highly pleomorphic, exhibiting either spherical or filamentous morphology. The influenza A virus strain A/Udorn/72 (H3N2) produces copious amounts of long filaments on the surface of infected cells where matrix protein 1(M1) and 2 (M2) play a key role in virus filament formation. Previously, it was shown that an anti-M2 ectodomain (M2e) antibody could inhibit A/Udorn/72 virus filament formation. However, the study of these structures is limited by their small size and complex structure. Here, we show that M2e-specific IgG1 and IgG2a mouse monoclonal antibodies can reduce influenza A/Udorn/72 virus plaque growth and infectivity in vitro. Using Immuno-staining combined with super-resolution microscopy that allows us to study structures beyond the diffraction limit, we report that M2 is localized at the base of viral filaments that emerge from the membrane of infected cells. Filament formation was inhibited by treatment of A/Udorn/72 infected cells with M2e-specific IgG2a and IgG1 monoclonal antibodies and resulted in fragmentation of pre-existing filaments. We conclude that M2e-specific IgGs can reduce filamentous influenza A virus replication in vitro and suggest that in vitro inhibition of A/Udorn/72 virus replication by M2e-specific antibodies correlates with the inhibition of filament formation on the surface of infected cells

    Unveiling polymerization mechanism in pH-regulated supramolecular fibers in aqueous media

    Get PDF
    An amine functionalized C3-symmetric benzotrithiophene (BTT) monomer has been designed and synthetized in order to form pH responsive one-dimensional supramolecular polymers in aqueous media. While most of the reported studies looked at the effect of pH on the size of the aggregates, herein, a detailed mechanistic study is reported, carried out upon modifying the pH to trigger the formation of positively charged ammonium groups. A dramatic and reversible change in the polymerization mechanism and size of the supramolecular fibers is observed and ascribed to the combination of Coulombic repulsive forces and higher monomer solubility. Furthermore, the induced frustrated growth of the fibers is further employed to finely control the one-dimensional supramolecular polymerisation and copolymerization processes.Financial support from MINECO (CTQ2017-85393-P) and ERA-NET/European Commission/MINECO (EuroNanoMed2017-191/PCIN-2017-042) is acknowledged by T.T. IMDEA Nanociencia acknowledges support from the “Severo Ochoa” Programme for Centres of Excellence in R&D (MINECO, Grant SEV2016-0686). M.G.I thanks Santander Talent Atraction Research (STAR2) for finantial support. This work was also financially supported by Spanish Ministry of Science and Innovation (PID2019-109450RB-I00/AEI/10.13039/501100011033), European Research Council/Horizon2020 (ERC-StG-757397), la Caixa Foundation (ID 100010434) and by the Generalitat de Catalunya (2017 SGR 01536) to S.P. and L.A

    Fast Label-Free Nanoscale Composition Mapping of Eukaryotic Cells Via Scanning Dielectric Force Volume Microscopy and Machine Learning

    Get PDF
    Mapping the biochemical composition of eukaryotic cells without the use of exogenous labels is a long-sought objective in cell biology. Recently, it has been shown that composition maps on dry single bacterial cells with nanoscale spatial resolution can be inferred from quantitative nanoscale dielectric constant maps obtained with the scanning dielectric microscope. Here, it is shown that this approach can also be applied to the much more challenging case of fixed and dry eukaryotic cells, which are highly heterogeneous and show micrometric topographic variations. More importantly, it is demonstrated that the main bottleneck of the technique (the long computation times required to extract the nanoscale dielectric constant maps) can be shortcut by using supervised neural networks, decreasing them from weeks to seconds in a wokstation computer. This easy-to-use data-driven approach opens the door for in situ and on-the-fly label free nanoscale composition mapping of eukaryotic cells with scanning dielectric microscopy

    Towards Cellular Ultrastructural Characterization in Organ-on-a-Chip by Transmission Electron Microscopy

    Get PDF
    Organ-on-a-chip technology is a 3D cell culture breakthrough of the last decade. This rapidly developing field of bioengineering intertwined with microfluidics provides new insights into disease development and preclinical drug screening. So far, optical and fluorescence microscopy are the most widely used methods to monitor and extract information from these models. Meanwhile transmission electron microscopy (TEM), despite its wide use for the characterization of nanomaterials and biological samples, remains unexplored in this area. In our work we propose a TEM sample preparation method, that allows to process a microfluidic chip without its prior deconstruction, into TEM-compatible specimens. We demonstrated preparation of tumor blood vessel-on-a-chip model and consecutive steps to preserve the endothelial cells lining microfluidic channel, for the chip’s further transformation into ultrathin sections. This approach allowed us to obtain cross-sections of the microchannel with cells cultured inside, and to observe cell adaptation to the channel geometry, as well as the characteristic for endothelial cells tight junctions. The proposed sample preparation method facilitates the electron microscopy ultrastructural characterization of biological samples cultured in organ-on-a-chip device

    From isodesmic to highly cooperative: Reverting the supramolecular polymerization mechanism in water by fine monomer design

    Get PDF
    Two structurally-similar discotic molecules able to self-assemble in water, forming supramolecular fibers, are reported. While both self-assembled polymers are indistinguishable from a morphological point-of-view, a dramatic change in their polymerization mechanism is observed (i.e., one self-assemble via an isodesmic mechanism, while the other shows one of the highest cooperativity values)

    Judging enzyme-responsive micelles by their covers : direct comparison of dendritic amphiphiles with different hydrophilic blocks

    Get PDF
    Enzymatically degradable polymeric micelles have great potential as drug delivery systems, allowing the selective release of their active cargo at the site of disease. Furthermore, enzymatic degradation of the polymeric nanocarriers facilitates clearance of the delivery system after it has completed its task. While extensive research is dedicated toward the design and study of the enzymatically degradable hydrophobic block, there is limited understanding on how the hydrophilic shell of the micelle can affect the properties of such enzymatically degradable micelles. In this work, we report a systematic head-to-head comparison of well-defined polymeric micelles with different polymeric shells and two types of enzymatically degradable hydrophobic cores. To carry out this direct comparison, we developed a highly modular approach for preparing clickable, spectrally active enzyme-responsive dendrons with adjustable degree of hydrophobicity. The dendrons were linked with three different widely used hydrophilic polymers-poly(ethylene glycol), poly(2-ethyl-2-oxazoline), and poly(acrylic acid) using the CuAAC click reaction. The high modularity and molecular precision of the synthetic methodology enabled us to easily prepare well-defined amphiphiles that differ either in their hydrophilic block composition or in their hydrophobic dendron. The micelles of the different amphiphiles were thoroughly characterized and their sizes, critical micelle concentrations, drug loading, stability, and cell internalization were compared. We found that the micelle diameter was almost solely dependent on the hydrophobicity of the dendritic hydrophobic block, whereas the enzymatic degradation rate was strongly dependent on the composition of both blocks. Drug encapsulation capacity was very sensitive to the type of the hydrophilic block, indicating that, in addition to the hydrophobic core, the micellar shell also has a significant role in drug encapsulation. Incubation of the spectrally active micelles in the presence of cells showed that the hydrophilic shell significantly affects the micellar stability, localization, cell internalization kinetics, and the cargo release mechanism. Overall, the high molecular precision and the ability of these amphiphiles to report their disassembly, even in complex biological media, allowed us to directly compare the different types of micelles, providing striking insights into how the composition of the micelle shells and cores can affect their properties and potential to serve as nanocarriers
    corecore