126 research outputs found

    The Evolution of the Stem Cell Theory for Heart Failure

    Get PDF
    ABSTRACTVarious stem cell-based approaches for cardiac repair have achieved encouraging results in animal experiments, often leading to their rapid proceeding to clinical testing. However, freewheeling evolutionary developments of the stem cell theory might lead to dystopian scenarios where heterogeneous sources of therapeutic cells could promote mixed clinical outcomes in un-stratified patient populations. This review focuses on the lessons that should be learnt from the first generation of stem cell-based strategies and emphasizes the absolute requirement to better understand the basic mechanisms of stem cell biology and cardiogenesis. We will also discuss about the unexpected “big bang” in the stem cell theory, “blasting” the therapeutic cells to their unchallenged ability to release paracrine factors such as extracellular membrane vesicles. Paradoxically, the natural evolution of the stem cell theory for cardiac regeneration may end with the development of cell-free strategies with multiple cellular targets including cardiomyocytes but also other infiltrating or resident cardiac cells

    Cardiomyocytes and Macrophages Discourse on the Method to Govern Cardiac Repair

    Get PDF
    In response to pathophysiological stress, the cardiac tissue undergoes profound remodeling process that incorporates the elimination of dying resident cells, compensatory hypertrophy of functional cardiomyocytes, growth and remodeling of the vascular compartment and formation of a fibrotic scar. Accumulating evidences indicate that cardiac remodeling is, at least in part, controlled by a complex crosstalk between cardiomyocytes and macrophages. The strategic location of abundant macrophages to the proximity of cardiomyocytes suggest that they could regulate the fate of cardiomyocytes in the injured heart. As such, macrophages appear as critical support cells for cardiomyocytes and play central roles in cardiac hypertrophy, fibrosis and remodeling. Notably, the cardiac tissue expands heterogeneous population of cardiac macrophages through local proliferation of resident macrophage as well as recruitment and differentiation of blood-derived monocytes. It has also been suggested that cardiac-resident macrophages display distinct functional properties from that of monocyte-derived macrophages in cardiac tissue. Furthermore, macrophages are an overflowing source of biological entities with non-canonical roles on cardiac conduction or cardiomyocyte proliferation by regulating action potential diffusion or cardiac cell cycle reentry. Alternatively, stressed cardiomyocytes can trigger the release of a broad repertoire of instructive signals that can regulate macrophage number, skew their phenotype and therefore direct their beneficial or deleterious actions. In this review, we highlight recent discoveries describing how the intricate dialogue between cardiomyocytes and macrophages can shape the deleterious or healing signaling mechanisms in the injured cardiac tissue

    Homeostatic and Tissue Reparation Defaults in Mice Carrying Selective Genetic Invalidation of CXCL12/Proteoglycan Interactions.

    Get PDF
    International audienceBACKGROUND: Interaction with heparan sulfate proteoglycans is supposed to provide chemokines with the capacity to immobilize on cell surface and extracellular matrix for accomplishing both tissue homing and signaling of attracted cells. However, the consequences of the exclusive invalidation of such interaction on the roles played by endogenous chemokines in vivo remain unascertained. METHODS AND RESULTS: We engineered a mouse carrying a Cxcl12 gene (Cxcl12(Gagtm)) mutation that precludes interactions with heparan sulfate structures while not affecting CXCR4-dependent cell signaling of CXCL12 isoforms (α, ÎČ, Îł). Cxcl12(Gagtm/Gagtm) mice develop normally, express normal levels of total and isoform-specific Cxcl12 mRNA, and show increased counting of circulating CD34(+) hematopoietic precursor cells. After induced acute ischemia, a marked impaired capacity to support revascularization was observed in Cxcl12(Gagtm/Gagtm) animals associated with a reduced number of infiltrating cells in the ischemic tissue despite the massive expression of CXCL12 isoforms. Importantly, exogenous administration of CXCL12Îł, which binds heparan sulfate with the highest affinity ever reported for a cytokine, fully restores vascular growth, whereas heparan sulfate-binding CXCL12Îł mutants failed to promote revascularization in Cxcl12(Gagtm/Gagtm) animals. CONCLUSION: These findings prove the role played by heparan sulfate interactions in the functions of CXCL12 in both homeostasis and physiopathological settings and document for the first time the paradigm of chemokine immobilization in vivo

    Myeloid-Epithelial-Reproductive Receptor Tyrosine Kinase and Milk Fat Globule Epidermal Growth Factor 8 Coordinately Improve Remodeling After Myocardial Infarction via Local Delivery of Vascular Endothelial Growth Factor.

    Get PDF
    BACKGROUND: In infarcted heart, improper clearance of dying cells by activated neighboring phagocytes may precipitate the transition to heart failure. We analyzed the coordinated role of 2 major mediators of efferocytosis, the myeloid-epithelial-reproductive protein tyrosine kinase (Mertk) and the milk fat globule epidermal growth factor (Mfge8), in directing cardiac remodeling by skewing the inflammatory response after myocardial infarction. METHODS AND RESULTS: We generated double-deficient mice for Mertk and Mfge8 (Mertk(-/-)/Mfge8(-/-)) and challenged them with acute coronary ligature. Compared with wild-type, Mertk-deficient (Mertk(-/-)), or Mfge8-deficient (Mfge8(-/-)) animals, Mertk(-/-)/Mfge8(-/-) mice displayed greater alteration in cardiac function and remodeling. Mertk and Mfge8 were expressed mainly by cardiac Ly6C(High and Low) monocytes and macrophages. In parallel, Mertk(-/-)/Mfge8(-/-) bone marrow chimeras manifested increased accumulation of apoptotic cells, enhanced fibrotic area, and larger infarct size, as well as reduced angiogenesis. We found that the abrogation of efferocytosis affected neither the ability of circulating monocytes to infiltrate cardiac tissue nor the number of resident Ly6C(High) and Ly6C(How) monocytes/macrophages populating the infarcted milieu. In contrast, combined Mertk and Mfge8 deficiency in Ly6C(High)/Ly6C(Low) monocytes/macrophages either obtained from in vitro differentiation of bone marrow cells or isolated from infarcted hearts altered their capacity of efferocytosis and subsequently blunted vascular endothelial growth factor A (VEGFA) release. Using LysMCre(+)/VEGFA(fl/fl) mice, we further identified an important role for myeloid-derived VEGFA in improving cardiac function and angiogenesis. CONCLUSIONS: After myocardial infarction, Mertk- and Mfge8-expressing monocyte/macrophages synergistically engage the clearance of injured cardiomyocytes, favoring the secretion of VEGFA to locally repair the dysfunctional heart

    Autophagy protein 5 controls flow-dependent endothelial functions

    Get PDF
    Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing

    Modulation of Macrophage Activation State Protects Tissue from Necrosis during Critical Limb Ischemia in Thrombospondin-1-Deficient Mice

    Get PDF
    International audienceBACKGROUND: Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI). However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1) is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI. METHODS AND FINDINGS: Using a genetic model of tsp-1(-/-) mice subjected to femoral artery excision, we report that tsp-1(-/-) mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1(-/-) and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1(-/-) mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1(-/-) mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1(-/-) mice, thereby demonstrating that macrophages mediated tissue protection in these mice. CONCLUSION: This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue repair during CLI. Furthermore, our data suggest that phagocytosis plays a crucial role in promoting a deleterious intra-tissular pro-inflammatory macrophage activation state during critical injuries. Finally, our results describe TSP-1 as a new relevant physiological target during critical leg ischemia

    B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction.

    Get PDF
    Acute myocardial infarction is a severe ischemic disease responsible for heart failure and sudden death. Here, we show that after acute myocardial infarction in mice, mature B lymphocytes selectively produce Ccl7 and induce Ly6C(hi) monocyte mobilization and recruitment to the heart, leading to enhanced tissue injury and deterioration of myocardial function. Genetic (Baff receptor deficiency) or antibody-mediated (CD20- or Baff-specific antibody) depletion of mature B lymphocytes impeded Ccl7 production and monocyte mobilization, limited myocardial injury and improved heart function. These effects were recapitulated in mice with B cell-selective Ccl7 deficiency. We also show that high circulating concentrations of CCL7 and BAFF in patients with acute myocardial infarction predict increased risk of death or recurrent myocardial infarction. This work identifies a crucial interaction between mature B lymphocytes and monocytes after acute myocardial ischemia and identifies new therapeutic targets for acute myocardial infarction.This work was supported by Inserm, British Heart Foundation (Z.M.), European Research Council (Z.M.), Fondation Coeur et Recherche (Z.M., T.S., N.D.), Fondation pour la Recherche Medicale (J.S.S.), European Union Seven Framework programme TOLERAGE (Z.M.), Fondation Leducq transatlantic network (C.J.B., D.T., A.T., J.S.S., Z.M.), National Institutes of Health grants AI56363 and AI057157, and a grant from The Lymphoma Research Foundation (T.F.T).This is the author accepted manuscript. The final version is available from Nature Publishing Group at http://dx.doi.org/10.1038/nm.3284

    stairs and fire

    Get PDF

    Thérapies cellulaires pro-angiogéniques dans le traitement des pathologies ischémiques

    No full text
    L’administration de cellules souches adultes est une option thĂ©rapeutique d’intĂ©rĂȘt pour les patients prĂ©sentant une artĂ©riopathie des membres infĂ©rieurs ou un infarctus du myocarde. L’efficacitĂ© de l’injection de diffĂ©rents types de cellules souches/progĂ©nitrices adultes autologues dĂ©rivĂ©es de la moelle osseuse, du sang pĂ©riphĂ©rique ou encore de tissus a Ă©tĂ© Ă©valuĂ©e dans des modĂšles expĂ©rimentaux. Ces cellules, notamment celles d’origine mĂ©dullaire ou adipocytaire, font l’objet d’essais cliniques. Cette revue synthĂ©tise les principaux mĂ©canismes molĂ©culaires et cellulaires sous-tendant l’action des cellules souches/progĂ©nitrices adultes sur le compartiment vasculaire et propose quelques approches pour amĂ©liorer leur efficacitĂ© thĂ©rapeutique chez les patients ischĂ©miques
    • 

    corecore