36 research outputs found
AGRONOMIC AND MOLECULAR CHARACTERIZATION OF DIPLOID IMPROVED BANANA GENOTYPES
An investigation about the genetical diversity among eleven banana diploid genotypes using nine agronomical characteristics and sixteen microsatellite markers was implanted at Embrapa Cassava and Tropical Fruits. Cruz das Almas (BA), Brazil. The generalized distance of Mahalanobis indicated the presence of genetic diversity. The genotypes were grouped into tree clusters. Among the investigated characteristics, the plant height, number of bunch's, number of fruits per bunch and pseudostem exhibited high contribution towards genetic divergence. The average number of alleles per primer was 7.51, with a total of 120 alleles identified. The average similarity among the all diploid was 0.44, range from 0.29 up to 0.60. New parental combinations can be identified with base of the divergence between these diploids, contributing for development of new improved diploids preventing the narrow genetic base and creating new genetic variability for selection.31115416
Enzymatic Mechanisms Involved in Evasion of Fungi to the Oxidative Stress: Focus on Scedosporium apiospermum
The airways of patients with cystic fibrosis (CF) are frequently colonized by various filamentous fungi, mainly Aspergillus fumigatus and Scedosporium species. To establish within the respiratory tract and cause an infection, these opportunistic fungi express pathogenic factors allowing adherence to the host tissues, uptake of extracellular iron, or evasion to the host immune response. During the colonization process, inhaled conidia and the subsequent hyphae are exposed to reactive oxygen species (ROS) and reactive nitrogen species (RNS) released by phagocytic cells, which cause in the fungal cells an oxidative stress and a nitrosative stress, respectively. To cope with these constraints, fungal pathogens have developed various mechanisms that protect the fungus against ROS and RNS, including enzymatic antioxidant systems. In this review, we summarize the different works performed on ROS- and RNS-detoxifying enzymes in fungi commonly encountered in the airways of CF patients and highlight their role in pathogenesis of the airway colonization or respiratory infections. The potential of these enzymes as serodiagnostic tools is also emphasized. In addition, taking advantage of the recent availability of the whole genome sequence of S. apiospermum, we identified the various genes encoding ROS- and RNS-detoxifying enzymes, which pave the way for future investigations on the role of these enzymes in pathogenesis of these emerging species since they may constitute new therapeutics targets
Image-based promoter prediction: a promoter prediction method based on evolutionarily generated patterns
Abstract Prediction of promoter regions is crucial for studying gene function and regulation. The well-accepted position weight matrix method for this purpose relies on predefined motifs, which would hinder application across different species. Here, we introduce image-based promoter prediction (IBPP) as a method that creates an “image” from training promoter sequences using an evolutionary approach and predicts promoters by matching with the “image”. We used Escherichia coli σ70 promoter sequences to test the performance of IBPP and the combination of IBPP and a support vector machine algorithm (IBPP-SVM). The “images” generated with IBPP could effectively distinguish promoter from non-promoter sequences. Compared with IBPP, IBPP-SVM showed a substantial improvement in sensitivity. Furthermore, both methods showed good performance for sequences of up to 2,000 nt in length. The performances of IBPP and IBPP-SVM were largely affected by the threshold and dimension of vectors, respectively. The source code and documentation are freely available at https://github.com/hahatcdg/IBPP