59 research outputs found

    Soil microstructure alterations induced by land use change for sugarcane expansion in Brazil

    Get PDF
    © 2019 British Society of Soil Science Land use change (LUC) alters soil structure and, consequently, the functions and services provided by these soils. Conversion from extensive pasture to sugarcane is one of the largest land transitions in Brazil as a result of the growth of the domestic and global demands of bioenergy. However, the impacts of sugarcane expansion on the soil structure under extensive pasture remains unclear, especially when considering changes at the microscale. We investigated whether LUC for sugarcane cultivation impacted soil microstructure quality. Undisturbed soil samples were taken from two soil layers (0–10 and 10–20cm) under three contrasting land uses (native vegetation—NV, pasture—PA and sugarcane—SC) in three different locations in the central-southern Brazil. Oriented thin sections (30μm) were used for micromorphological analysis. The total area of pores decreased following the LUC in the following order: NV > PA > SC in both soil layers. The area of large complex packing pores (>0.01mm²) also decreased with the LUC sequence: NV>PA>SC. Qualitative and semi-quantitative micromorphological analysis confirmed porosity reduction was driven by the decrease in complex packing pores and that biological features decreased in the same LUC sequence as the quantitative parameters. Therefore, LUC for sugarcane expansion reduced microscale soil porosity, irrespectively of soil type and site-specific conditions, indicating that the adoption of more sustainable management practices is imperative to preserve soil structure and sustain soil functions in Brazilian sugarcane fields

    Secondary forest fragments offer important carbon‐biodiversity co‐benefits

    Get PDF
    Tropical forests store large amounts of carbon and high biodiversity, but are being degraded at alarming rates. The emerging global Forest and Landscape Restoration (FLR) agenda seeks to limit global climate change by removing carbon dioxide from the atmosphere through the growth of trees. In doing so, it may also protect biodiversity as a free co‐benefit, which is vital given the massive shortfall in funding for biodiversity conservation. We investigated whether natural forest regeneration on abandoned pastureland offers such co‐benefits, focusing for the first time on the recovery of taxonomic, phylogenetic and functional diversity of trees, including the recovery of threatened and endemic species richness, within isolated secondary forest fragments. We focused on the globally threatened Brazilian Atlantic Forest, where commitments have been made to restore one million hectares under FLR. Three decades after land abandonment, regenerating forests had recovered ~20% (72 Mg/ha−1) of the above‐ground carbon stocks of a primary forest, with cattle pasture containing just 3% of stocks relative to primary forests. Over this period, secondary forest recovered ~76% of taxonomic, 84% of phylogenetic and 96% of functional diversity found within primary forests. In addition, secondary forests had on average recovered 65% of threatened and ~30% of endemic species richness of primary Atlantic forest. Finally, we find positive relationships between carbon stock and tree diversity recovery. Our results emphasize that secondary forest fragments offer co‐benefits under FLR and other carbon‐based payments for ecosystem service schemes (e.g. carbon enhancements under REDD +). They also indicate that even isolated patches of secondary forest could help to mitigate climate change and the biodiversity extinction crisis by recovering species of high conservation concern and improving landscape connectivity

    Differentially expressed plasmatic microRNAs in Brazilian patients with Coronavirus disease 2019 (COVID-19): preliminary results

    Get PDF
    Background: Coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is known that host microRNAs (miRNAs) can be modulated to favor viral infection or to protect the host. Herein, we report preliminary results of a study aiming at identifying differentially expressed plasmatic miRNAs in Brazilian patients with COVID-19. Methods and results: miRNAs were extracted from the plasma of eight patients with COVID-19 (four patients with mild COVID-19 and four patients with severe/critical COVID-19) and four healthy controls. Patients and controls were matched for sex and age. miRNA expression levels were detected using high-throughput sequencing. Differential miRNA expression and enrichment analyses were further evaluated. A total of 18 miRNAs were differentially expressed between patients with COVID-19 and controls. miR-4433b-5p, miR-6780b-3p, miR-6883-3p, miR-320b, miR-7111-3p, miR-4755-3p, miR-320c, and miR-6511a-3p were the most important miRNAs significantly involved in the PI3K/AKT, Wnt/β-catenin, and STAT3 signaling pathways. Moreover, 42 miRNAs were differentially expressed between severe/critical and mild patients with COVID-19. miR-451a, miR-101-3p, miR-185-5p, miR-30d-5p, miR-25-3p, miR-342-3p, miR-30e-5p, miR-150-5p, miR-15b-5p, and miR-29c-3p were the most important miRNAs significantly involved in the Wnt/β-catenin, NF-κβ, and STAT3 signaling pathways. Conclusions: If validated by quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in a larger number of participants, the miRNAs identified in this study might be used as possible biomarkers for the diagnosis and severity of COVID-19

    Tamanho de amostras para a determinação de parâmetros físicos em planossolo por tomografia computadorizada

    Get PDF
    A técnica da tomografia computadorizada (TC) permite medir a densidade e a umidade de amostras de solo, constituindo uma importante ferramenta na Ciência do Solo. Este trabalho tem como objetivos descrever os aspectos da adequação do tamanho de amostras de um Planossolo e os procedimentos de avaliação e estudos por análise estatística, empregando-se um minitomógrafo computadorizado de raios gama com fonte de 241Am. O valor do erro atribuído ao equipamento são 0,051 e 0,046 Mg m-3, respectivamente, para os horizontes A e B. O valor teórico da espessura da amostra do Planossolo para uso na técnica de TC com fonte de 241Am é, aproximadamente, 4,0 cm para os horizontes A e B. Já a espessura ideal de amostras é de aproximadamente 6,0 cm, sendo menor para amostras do horizonte B em relação ao A. Obteve-se boa precisão e adaptabilidade no emprego da TC para estudos de Planossolos._________________________________________________________________________________ ABSTRACT: Computerized tomography (CT) is an important tool in Soil Science for noninvasive measurement of density and water content of soil samples. This work aims to describe the aspects of sample size adequacy for Planosol (Albaqualf) and to evaluate procedures for statistical analysis, using a CT scanner with a 241Am source. Density errors attributed to the equipment are 0.051 and 0.046 Mg m-3 for horizons A and B, respectively. The theoretical value for sample thickness for the Planosol, using this equipment, is 4.0 cm for the horizons A and B. The ideal thickness of samples is approximately 6.0 cm, being smaller for samples of the horizon B in relation to A. Alternatives for the improvement of the efficiency analysis and the reliability of the results obtained by CT are also discussed, and indicate good precision and adaptability of the application of this technology in Planosol (Albaqualf) studies
    corecore