51 research outputs found

    Physical Exercise Decreases Fasting Hyperglycemia in Diabetic Mice Through AMPK Activation

    Get PDF
    Introduction: The deficiency in glucose uptake in peripheral tissues and increased hepatic gluconeogenesis are physiopathological phenomena observed in type 2 diabetes patients. Physical exercise plays an important role in the improvement of glycemic profile in diabetic patients; however, the mechanisms involved in these processes have not been fully elucidated. Objective: to assess the role of AMPK protein in the glycemic control of diabetic mice after exercise. Methods: During fasting condition, the insulin tolerance test (ITT) and Western blot technique, were combined to assess the glucose homeostasis in diabetic mice (ob/ob and db/db) after a single swimming session. Results: Fasting hyperglycemia, severe insulin resistance and deficiency in the AMPk/ACC signaling in muscle and liver observed in the diabetic mice were reversed after the exercise session. The restoration of AMPK/ACC signaling reduced the expression of the gluconeogenic enzyme, PEPCk in the liver, and increased the translocation of GLUT4 in the skeletal muscle. These data indicate that the activation of AMPK/ACC pathway induced by physical exercise is important to reduce fasting glucose levels in experimental models of type 2 diabetes. These data open new insights for determination of physical activity control on the glucose homeostasis in diabetic patients.15317918

    Activation of p38MAPK Contributes to Expanded Polyglutamine-Induced Cytotoxicity

    Get PDF
    The signaling pathways that may modulate the pathogenesis of diseases induced by expanded polyglutamine proteins are not well understood.Herein we demonstrate that expanded polyglutamine protein cytotoxicity is mediated primarily through activation of p38MAPK and that the atypical PKC iota (PKCiota) enzyme antagonizes polyglutamine-induced cell death through induction of the ERK signaling pathway. We show that pharmacological blockade of p38MAPK rescues cells from polyglutamine-induced cell death whereas inhibition of ERK recapitulates the sensitivity observed in cells depleted of PKCiota by RNA interference. We provide evidence that two unrelated proteins with expanded polyglutamine repeats induce p38MAPK in cultured cells, and demonstrate induction of p38MAPK in an in vivo model of neurodegeneration (spinocerebellar ataxia 1, or SCA-1).Taken together, our data implicate activated p38MAPK in disease progression and suggest that its inhibition may represent a rational strategy for therapeutic intervention in the polyglutamine disorders

    Inheritance and linkage of metabolism-based herbicide cross-resistance in rigid ryegrass (Lolium rigidum)

    No full text
    The inheritance and linkage of enhanced metabolism-based herbicide cross-resistance was examined in a multiple resistant population of rigid ryegrass. F₁ hybrids between resistant and susceptible populations showed an intermediate response to all the four herbicides tested, with no indication of maternal inheritance. Segregation of F₂ families fitted a single-gene model for resistance to simazine, chlorotoluron, and chlorsulfuron. But there was more than the expected mortality from the low dose of tralkoxydim. Segregating F₂ populations were selected by high rates of each of the four herbicides to create selected F₂ families. Analysis of the response of these families demonstrated that simazine resistance is linked to chlorotoluron resistance. No other herbicide resistances were linked. Therefore, in this population of rigid ryegrass, at least three separate genes are responsible for metabolism-based cross-resistance. This study shows that multiple herbicide resistance in rigid ryegrass is the result of accumulation of a number of different resistance genes.http://www.jstor.org/stable/404661

    Utilization of fluorescent probe association for simultaneous assessment of plasmatic, acrosomal, and mitochondrial membranes of rooster spermatozoa

    No full text
    This experiment was designed with the objective of developing a simple, practical, and high repeatability technique for the simultaneous evaluation of the integrity of the plasmatic and acrosomal membranes, as well as funcional mitochondria of domestic fowl spermatozoa using an association of fluorescent probes. Four ejaculates (motility > 80% and abnormal morphology < 10%) from each of six Ross male broiler breeder (n=24) were diluted in TALP sperm medium (25x10(6) spermatozoa/mL) and split into two aliquots, and one of these aliquots was flash frozen in liquid nitrogen and thawed to damage all cellular membranes. Three treatments were prepared from these aliquots, with the following ratios of Fresh semen:Flash frozen semen: 100:0 (T100), 50:50 (T50), and 0:100 (T0). A 150-µL aliquot of diluted semen was placed in a microcentrifuge tube with the addition of 2-µL PI, 2-µL MITO, and 50-µL FITC-PSA, and incubated at 38.5º C/8 min in the dark. An 8-µL sample was placed on a slide, coverslipped, and examined by epifluorescence microscopy. Each sample had 200 cells counted and classified based on the fluorescence emitted by each probe. By regression analysis, plasma membrane integrity, as detected by PI, was determined as: v=4.17+0.82X (R²=0.95). Acrosome integrity, as detected by FITC-PSA, generated the equation: v=4.19+0.84X (R²=0.96). Functional mitochondria was estimated by the equation v=3.20+0.83X (R²=0.96). This is an efficient technique to simultaneously evaluate plasmatic, acrosomal, and mitochondrial membranes in fowl sperm. It is suggested that its application in flow cytometry systems allows this methodology to be applied in large scale
    corecore