1,242 research outputs found

    Characterization and inhibitory activity of chitosan on hyphae growth and morphology of Botrytis cinerea plant pathogen

    Get PDF
    Summary. Low and high molecular weight chitosan were tested in different concentrations and growth times with the aim to evaluate the inhibitory activity against Botrytis cinerea, a very important plant pathogen. Tested chitosans were characterized by vibratory spectroscopy and elementary analyzes to determine the deacetylation degree. In addiction molar mass was estimated by viscosity measuring. Scanning electron microscopy was utilized for antimicrobial activity observation. Results showed that both chitosans markedly inhibited fungal growth, which was effected by incubation time and chitosan concentration. Scanning electron microscopy observations revealed that chitosan induced changes in surface morphology. The present study show that chitosan is capable of inhibit the growth and cause serious damage to the cell structure of the B. cinerea, as well as have the ability to form an impervious layer around the cell. Therefore, chitosan could be considered as a potential alternative for synthetic fungicides. Industrial relevance. Ultrastructural analysis showed that chitosan is capable of causing serious damage to the cell structure of the B. cinerea, as well as have the ability to form an impervious layer around the cell. Chitosan could inhibit the growth of B. cinerea in vitro and consequently may be considered as a potential alternative in replacement of synthetic fungicides.info:eu-repo/semantics/publishedVersio

    Machine learning and feature selection methods for egfr mutation status prediction in lung cancer

    Get PDF
    The evolution of personalized medicine has changed the therapeutic strategy from classical chemotherapy and radiotherapy to a genetic modification targeted therapy, and although biopsy is the traditional method to genetically characterize lung cancer tumor, it is an invasive and painful procedure for the patient. Nodule image features extracted from computed tomography (CT) scans have been used to create machine learning models that predict gene mutation status in a noninvasive, fast, and easy-to-use manner. However, recent studies have shown that radiomic features extracted from an extended region of interest (ROI) beyond the tumor, might be more relevant to predict the mutation status in lung cancer, and consequently may be used to significantly decrease the mortality rate of patients battling this condition. In this work, we investigated the relation between image phenotypes and the mutation status of Epidermal Growth Factor Receptor (EGFR), the most frequently mutated gene in lung cancer with several approved targeted-therapies, using radiomic features extracted from the lung containing the nodule. A variety of linear, nonlinear, and ensemble predictive classification models, along with several feature selection methods, were used to classify the binary outcome of wild-type or mutant EGFR mutation status. The results show that a comprehensive approach using a ROI that included the lung with nodule can capture relevant information and successfully predict the EGFR mutation status with increased performance compared to local nodule analyses. Linear Support Vector Machine, Elastic Net, and Logistic Regression, combined with the Principal Component Analysis feature selection method implemented with 70% of variance in the feature set, were the best-performing classifiers, reaching Area Under the Curve (AUC) values ranging from 0.725 to 0.737. This approach that exploits a holistic analysis indicates that information from more extensive regions of the lung containing the nodule allows a more complete lung cancer characterization and should be considered in future radiogenomic studies.This work is financed by the ERDF—European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation—COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT—Fundação para a Ciência e a Tecnologia within project POCI-01-0145-FEDER-030263

    Comprehensive perspective for lung cancer characterisation based on AI solutions using CT images

    Get PDF
    Lung cancer is still the leading cause of cancer death in the world. For this reason, novel approaches for early and more accurate diagnosis are needed. Computer-aided decision (CAD) can be an interesting option for a noninvasive tumour characterisation based on thoracic computed tomography (CT) image analysis. Until now, radiomics have been focused on tumour features analysis, and have not considered the information on other lung structures that can have relevant features for tumour genotype classification, especially for epidermal growth factor receptor (EGFR), which is the mutation with the most successful targeted therapies. With this perspective paper, we aim to explore a comprehensive analysis of the need to combine the information from tumours with other lung structures for the next generation of CADs, which could create a high impact on targeted therapies and personalised medicine. The forthcoming artificial intelligence (AI)-based approaches for lung cancer assessment should be able to make a holistic analysis, capturing information from pathological processes involved in cancer development. The powerful and interpretable AI models allow us to identify novel biomarkers of cancer development, contributing to new insights about the pathological processes, and making a more accurate diagnosis to help in the treatment plan selection.This work is financed by the ERDF–European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation–COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT–Fundação para a Ciência e a Tecnologia within project POCI-01-0145-FEDER-030263

    EGFR Assessment in Lung Cancer CT Images: Analysis of Local and Holistic Regions of Interest Using Deep Unsupervised Transfer Learning

    Get PDF
    Statistics have demonstrated that one of the main factors responsible for the high mortality rate related to lung cancer is the late diagnosis. Precision medicine practices have shown advances in the individualized treatment according to the genetic profile of each patient, providing better control on cancer response. Medical imaging offers valuable information with an extensive perspective of the cancer, opening opportunities to explore the imaging manifestations associated with the tumor genotype in a non-invasive way. This work aims to study the relevance of physiological features captured from Computed Tomography images, using three different 2D regions of interest to assess the Epidermal growth factor receptor (EGFR) mutation status: nodule, lung containing the main nodule, and both lungs. A Convolutional Autoencoder was developed for the reconstruction of the input image. Thereafter, the encoder block was used as a feature extractor, stacking a classifier on top to assess the EGFR mutation status. Results showed that extending the analysis beyond the local nodule allowed the capture of more relevant information, suggesting the presence of useful biomarkers using the lung with nodule region of interest, which allowed to obtain the best prediction ability. This comparative study represents an innovative approach for gene mutations status assessment, contributing to the discussion on the extent of pathological phenomena associated with cancer development, and its contribution to more accurate Artificial Intelligence-based solutions, and constituting, to the best of our knowledge, the first deep learning approach that explores a comprehensive analysis for the EGFR mutation status classification.The authors acknowledge the National Cancer Institute and the Foundation for the National Institutes of Health for the free publicly available LIDC-IDRI Database used in this work. They also acknowledge The Cancer Imaging Archive (TCIA) for the open-access NSCLC-Radiogenomics dataset publicly available. This work was supported in part by the European Regional Development Fund (ERDF) through the Operational Program for Competitiveness and Internationalization—COMPETE 2020 Program, and in part by the National Funds through the Portuguese Funding Agency, Fundação para a Ciência e a Tecnologia (FCT), under Project POCI-01-0145-FEDER-030263

    Microbiome-derived antimicrobial peptides offer therapeutic solutions for the treatment of Pseudomonas aeruginosa infections

    Get PDF
    Microbiomes are rife for biotechnological exploitation, particularly the rumen microbiome, due to their complexicity and diversity. In this study, antimicrobial peptides (AMPs) from the rumen microbiome (Lynronne 1, 2, 3 and P15s) were assessed for their therapeutic potential against seven clinical strains of Pseudomonas aeruginosa. All AMPs exhibited antimicrobial activity against all strains, with minimum inhibitory concentrations (MICs) ranging from 4–512 µg/mL. Time-kill kinetics of all AMPs at 3× MIC values against strains PAO1 and LES431 showed complete kill within 10 min to 4 h, although P15s was not bactericidal against PAO1. All AMPs significantly inhibited biofilm formation by strains PAO1 and LES431, and induction of resistance assays showed no decrease in activity against these strains. AMP cytotoxicity against human lung cells was also minimal. In terms of mechanism of action, the AMPs showed affinity towards PAO1 and LES431 bacterial membrane lipids, efficiently permeabilising the P. aeruginosa membrane. Transcriptome and metabolome analysis revealed increased catalytic activity at the cell membrane and promotion of β-oxidation of fatty acids. Finally, tests performed with the Galleria mellonella infection model showed that Lynronne 1 and 2 were efficacious in vivo, with a 100% survival rate following treatment at 32 mg/kg and 128 mg/kg, respectively. This study illustrates the therapeutic potential of microbiome-derived AMPs against P. aeruginosa infections
    • …
    corecore