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ABSTRACT Statistics have demonstrated that one of the main factors responsible for the high mortality
rate related to lung cancer is the late diagnosis. Precision medicine practices have shown advances in the
individualized treatment according to the genetic profile of each patient, providing better control on cancer
response. Medical imaging offers valuable information with an extensive perspective of the cancer, opening
opportunities to explore the imaging manifestations associated with the tumor genotype in a non-invasive
way. This work aims to study the relevance of physiological features captured from Computed Tomography
images, using three different 2D regions of interest to assess the Epidermal growth factor receptor (EGFR)
mutation status: nodule, lung containing the main nodule, and both lungs. A Convolutional Autoencoder
was developed for the reconstruction of the input image. Thereafter, the encoder block was used as a feature
extractor, stacking a classifier on top to assess the EGFRmutation status. Results showed that extending the
analysis beyond the local nodule allowed the capture ofmore relevant information, suggesting the presence of
useful biomarkers using the lung with nodule region of interest, which allowed to obtain the best prediction
ability. This comparative study represents an innovative approach for gene mutations status assessment,
contributing to the discussion on the extent of pathological phenomena associated with cancer development,
and its contribution to more accurate Artificial Intelligence-based solutions, and constituting, to the best
of our knowledge, the first deep learning approach that explores a comprehensive analysis for the EGFR
mutation status classification.

INDEX TERMS Convolutional autoencoder, EGFR prediction, lung cancer, transfer learning, unsupervised
feature learning.

I. INTRODUCTION
Lung cancer still presents high incidence and mortality
rates [1]. Despite the relevant impact of early detection,
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the identification of the biomarkers associated with can-
cer development could define a personalized treatment plan
based on target therapies, which would contribute to the
survival rate increase [2]. Target therapies are drugs that
have an effect on specific molecules responsible for growth,
progression, and spread of cancer. These therapies act on
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specific molecular targets increasing the success of the treat-
ment response and decreasing the side effects, due to the
specificity of their action. However, the development of these
therapies requires the identification of the biomarkers [3].
In lung cancer, the two most relevant oncogenes are: Epider-
mal growth factor receptor (EGFR) and Kirsten rat sarcoma
viral oncogene homolog (KRAS) [4]. EGFR is a predictive
biomarker with clinically approved therapies [5]. KRAS has
shown to be more difficult to target due to the biochem-
istry complexity and there are no KRAS inhibitors as an
approved therapy [6], [7]. For this reason, the EGFR muta-
tion status identification is the most important oncogene in
the treatment-decision pathway. Traditionally, the oncogene
mutation status is assessed by molecular testing using the
tissues extracted during the biopsy. Recently, less invasive
andmore automatic techniques, such as computer-aided diag-
nosis (CAD) based on Computed Tomography (CT) analysis,
have been developed, decreasing the risk for the patients and
improving the accuracy of the diagnosis [8], [9].

Radiogenomics approaches, using CT images for lung
cancer characterization, have recently been explored with
a small number of publications and very limited by the
small size of the available databases with those type of
data (thoracic CT scans and molecular results for onco-
gene mutation status). Despite that, works based on the
traditional statistical analysis to classify the EGFR muta-
tion status for lung cancer patients [10], [11] showed that
there are radiomic signatures in CT images that can be
used to distinguish the EGFR mutated from the wild type.
Semantic features annotated by radiologists from CT scans
were used to feed a decision tree and achieved an Area
Under the Curve (AUC) of 0.89 [12]. A more complex
approach based on an ensemble of decision trees - XGBoost
classifier - was used to predict the EGFR mutation sta-
tus and obtained an AUC of 0.75 [13]. Exploratory studies
that took into consideration semantic features from multiple
lung structures, not focusing only on the nodule (traditional
approach), showed the importance of including extra-tumoral
features to obtain a successful EGFR mutation status clas-
sifier [10], [12], [13]. The use of more powerful Artificial
Intelligence (AI)-based methods has shown to be able to
automatically capture relevant information from CT images
while avoiding ad hoc features extraction. A region of inter-
est (ROI) containing the tumor from CT scans was used in a
deep learning (DL)model similar to DenseNet, pre-trained on
the ImageNet dataset [14], with Transfer Learning techniques
for the EGFR classification, achieving an AUC of 0.85 [15].
A 3D DenseNet was developed to process 3D patches of
lung nodules from CT data, and to learn representations
with supervised end-to-end training, which combined with
radiomic features, obtained an AUC of 0.76 for automatic
EGFR prediction status [16]. Ensemble machine learning
and DL models were proposed for a final decision and
allowed the fusion of the radiomics-based model and the
multi-level residual convolutional neural network (CNN)

based model, which obtained an AUC value of 0.83 [17].
Using patches centered on the nodule, CNN-based features in
conjunction with a Support Vector Machine (SVM) achieved
an AUC of 0.83 [18].

The previous works have taken into consideration differ-
ent regions for oncogene prediction, although usually cen-
tered on the nodule [14]–[16], [18]. The approaches based
on the semantic features annotated by radiologists, which
evaluate imagiological findings from the nodule and other
lung structures [10], [12], [13], allow a more comprehensive
analysis of the lung pathological processes associated with
cancer development, which seems to indicate that cancer
development is related to multiple physiological changes not
restricted to the nodule region. However, the contribution of
the amount of information of one region that is taken into
consideration for EGFR status prediction was not studied.
This work is focused on twomain challenges inEGFR assess-
ment: the study of the ROI that captures a more comprehen-
sive analysis of the biological problem, and the development
of an approach to overcome the lack of massive annotated
datasets. This study proposes an innovative comparison of
ROIs based on a binary classification to assess the EGFR
mutation status using information not only from the nodule
but also considering a larger ROI including the lung where
the nodule is located or both lungs in the selected CT axial
slice. The main motivation behind this evaluation relied on
the hypothesis that it might be possible to find relevant infor-
mation related to EGFR mutation status outside of the tumor
ROI. On the other hand, the methodology proposed in this
work was developed to allow the use of databases without
molecular information. A Convolutional Autoencoder (CAE)
was initially trained with unlabelled data, using the intrinsic
mechanisms of reconstruction of the input image to train the
encoder [19]. The encoder layers from the pre-trained CAE
were used as feature extractor, stacking a classifier on top to
be completely trained for the EGFR mutation status predic-
tion. The proposed approach based on CAE pre-trained with
unlabelled data allows to overcome one of the biggest limita-
tions on the medical domain: the access of massive annotated
datasets.

This work is organized as follows: the information on the
datasets used, the proposed Transfer Learning methodology
and the performed experiments inherent to each analysis
are detailed in Section II; the results of the comparative
study are presented and discussed in Section III; the conclu-
sions are presented in Section IV.

II. MATERIALS AND METHODS
A. DATASETS
For this study, two databases that allow to achieve the defined
objectives were identified: one containing thoracic CT scans
with binary masks for pulmonary nodules used for the feature
extraction phase, and another database with CT scans from
lung cancer patients comprising the EGFR mutation status
information.
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TABLE 1. Summary of the number of images used regarding each task. The total number of images values are presented after the slice oversampling
operations further detailed (see Figure 4).

1) LIDC-IDRI
The LIDC-IDRI [20], [21] is a lung cancer screening dataset
that comprises thoracic CT scans for a total of 1010 patients,
alongside with annotated nodules belonging to one of
three classes: a) nodule ≥ 3 mm; b) nodule < 3 mm or
c) non-nodule ≥ 3 mm, made during a two-phase anno-
tation process by four experienced radiologists. Regarding
data acquisition, slice thickness ranged from 0.6 to 5.0 mm,
with X-ray current from 40 to 627 mA (mean: 222.1 mA)
at 120-140 kVp. From the 7371 detected lesions, only
2669 were classified as larger than 3 mm by at least one
clinician. These were the examples included in this study
given the availability of nodule contours marked by each
radiologist (see Table 1).

2) NSCLC-RADIOGENOMICS
The NSCLC-Radiogenomics dataset [22] is a public avail-
able collection with CT images for a cohort of patients
with non-small cell lung cancer (NSCLC), being the only
public dataset that comprises paired information on lung
cancer-related gene mutation status and CT data. Addition-
ally, semantic tumor annotations are included in a controlled
vocabulary as well as binary tumor masks, although not
available for the entire set of subjects. This dataset includes
CT scans obtained using different scanner models and scan-
ning protocols, presenting variations in slice thickness from
0.625 to 3 mm (median: 1.5 mm) and X-ray tube current
from 124 to 699 mA (mean 220 mA) at 80–140 kVp (mean
120 kVp) [22]. From theNSCLC-Radiogenomics data collec-
tion, despite including a cohort of 211 patients, only 116 were
selected due to a required EGFR mutational test result of
Mutant orWildtype and the availability of tumor binary mask.
From these 116 included patients, 23 patients (20%) belonged
to the Mutant class, and 93 (80%) to the Wildtype class
(see Table 1).

3) DATA PREPARATION
CT scans from both databases were resampled to standard-
ize image representations. The pixel spacing was set to
[1.00, 1.00, 1.00] mm and each CT dimensions were cal-
culated to match this new spacing, obtaining the resampled
image by interpolation [23]. Additionally, each pixel intensity
value, measured in the Hounsfield Units (HU) scale, was nor-
malized using themin-max normalization method, and values
under −1000 HU, which corresponds to air’s radiodensity
value, were transformed into 0 and values above 400 HU,
representing hard tissues like bones, were transformed into 1.

FIGURE 1. Illustrative examples of CT slices from an LIDC-IDRI (left) [20],
and NSCLC-Radiogenomics patients (right) [22], resultant from the
pre-processing procedure.

A linear transformation was computed tomap all values in the
middle into the [0, 1] intended range. In the final result, each
database was composed by images with size N × 512× 512,
withN representing the number of slices of the correspondent
CT scan. A CT slice example from each one of the described
databases is represented in Figure 1. In Table 1, a summary of
the number of samples used regarding each task is presented.

B. PREDICTIVE APPROACH
The proposed approach in this work is composed by two
main phases: a feature learning task, where a Convolu-
tional Autoencoder is implemented and trained on images
in the lung cancer domain; and a second task, which con-
sists of developing an end-to-end classification model based
on Transfer Learning techniques, using the trained convolu-
tional encoder and a classifier to predict the EGFR mutation
status. The overview of the proposed approach is represented
in Figure 2.

1) FEATURE LEARNING
Being widely explored to overcome the lack of publicly
available data in the medical imaging field [24], Transfer
Learning has proven to allow the use of deeper architectures
by using pre-trained neural networks on massive datasets,
like ImageNet [14], which significantly reduces the num-
ber of trainable parameters. In this work, given the scarce
dataset size available to perform the target task, we consid-
ered an alternative approach, consisting of developing and
training the feature extractor in the same domain of the
final task [25]. This Transfer Learning strategy was chosen
based on the intuition that the trained encoder would be
capable of achieving the necessary general knowledge in the
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FIGURE 2. Overview of the proposed approach based on the unsupervised pre-training of the CAE to be used as feature extractor of the CT
images, and an end-to-end classifier to predict the EGFR mutation status. Transfer Learning allows to reuse the encoder trained with
unlabelled data (LIDC-IDRI [20] database) as a feature extractor for the EGFR classification (NSCLC-Radiogenomics [22] database).

FIGURE 3. Overview of the three ROIs selected for EGFR mutation status prediction as wild or mutated: nodule, lung containing nodule and
both lungs.

lung cancer domain, and intends to explore the relevance
of the learned patterns while training an encoder-decoder
based architecture for input reconstructions (see Figure 2).
More specifically, it was investigated whether the knowl-
edge achieved by the pre-trained encoder, in an unsupervised
way, could be useful in the detection of relevant EGFR-
related patterns. For the CAE development in this phase,
the LIDC-IDRI [20] extracted samples were used in both
nodule and lung analyses.

2) EGFR MUTATION STATUS CLASSIFICATION
To the end-to-end classification task, a multi-layer percep-
tron (MLP) was stacked on top of the pre-trained encoder
(see Figure 2). Given the ability of this neural network based

classifier to backpropagate the prediction error to the encoder
layers, it was possible to fine-tune the higher-level layers of
the convolutional feature extractor, which helped themodel to
learn to detect themost useful patterns for theEGFRmutation
status assessment. Without this fine-tuning process, the gen-
eral knowledge achieved by the pre-trained encoder would
not be sufficient to extract such abstract and complex imag-
ing manifestations. To perform the intended EGFR mutation
status prediction, the dataset used in this task was based on
the NSCLC-Radiogenomics [22] included examples.

C. EXPERIMENT DESIGN
Considering the experiments conducted, both the nodule and
lung analysis consisted of a feature learning task for the CAE
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training, and a classification task, where bymaking advantage
of Transfer Learning techniques, the EGFR mutation status
was predicted on the correspondent ROI. Figure 3 shows the
pipeline for the selection of the three considered ROIs used
for the prediction: nodule, lung containing nodule and both
lungs.

1) NODULE ANALYSIS
In this first experiment, the analysed ROI only contained the
nodule region. An image with size 80× 80× 80 voxels was
extracted for each considered example in this analysis. It was
ensured that each nodule fit in the size chosen for the ROI.
In an attempt to reduce the overfitting effect by increasing
the number of training examples, middle slices from the axial,
coronal and sagittal planes were sampled, alongside six more
slices from the cube symmetry planes (Figure 4). During the
training phase, this slice oversampling allowed not only to
increase the training dataset size, but also to improve class
balancing by sampling more slices for the examples of the
minority class. Additionally, some data augmentation was
also employed to decrease the chances of overfitting [26],
consisting of horizontal and vertical flips, as well as random
image rotations. Training, cross-validation and testing data
combinations were made using a patient-level split.

FIGURE 4. Slice extraction example using the cube symmetry planes for
the nodule centered ROI.

The CAE proposed architecture consisted of four 3 × 3
convolutional layers, each one followed by a Rectified Linear
Unit (ReLU) activation and a max-pooling layer to reduce the
input by half. Passing through the encoder block, the resul-
tant bottleneck is represented by a feature map (FM) with
size 256 × H

8 ×
W
8 , with H and W corresponding to the

height and width dimensions of the original input tensor,
respectively. To enable the image reconstruction mechanism,
the decoder was implemented by mirroring the encoder
part (see Figure 2). The CAE was trained to minimize the
Mean Squared Error (MSE) value, which represented the
averaged pixel-wise differences between the input and its
reconstruction.

2) LUNG ANALYSIS
To investigate the correlation of other lung structures with
the EGFR mutation status, two different analysis were con-
ducted: using an axial section with both lungs and only the
lung with main nodule (Figure 3).

For the feature learning task, it was necessary to create
a dataset that contained lung segmented slices to study the

importance of not eliminating non-lung structures. Thus,
for each patient from the LIDC-IDRI data collection with
a nodule classified as larger than 3 mm by at least one
radiologist, one axial slice was extracted. This slice was
selected based on the area of the nodule section, using the
available nodule mask to find the slice with the largest
nodule section. This selection criterion was used to keep
the nodule as the main focus of the analysis. Thus, a 2D
lung segmentation model based on U-Net architecture was
implemented. The result was an axial lung slice generated
from each patient scan, with only lung areas and back-
ground. Following this pre-processing phase, 875 lung axial
slices from the LIDC-IDRI database were used to develop
the new CAE. A similar encoder-decoder architecture was
implemented, adding one extra strided convolutional layer
for each part given the higher resolution of the input in this
analysis.

For the experiments where only the lung with nodule was
analysed, each considered slice was transformed as repre-
sented in Figure 5.

FIGURE 5. Examples of the selection of lung containing nodule based on
the nodule position. Slices from NSCLC-Radiogenomics database
patients [22].

A hyper-parameters search was adopted to find the best
performance, with the range of values depicted in Table 2
regarding the CAE training, and Table 3 for the EGFR clas-
sification model, for the two experiments in the study: based
on nodule and on the lung.

III. RESULTS AND DISCUSSION
The results for the approach optimization and the achieved
classification performance are presented in this section, fol-
lowed by the discussion and interpretation of the present
results in comparison with the literature and the identified
limitations of the study.
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TABLE 2. Hyper-parameters range values considered in the search,
regarding each CAE training.

TABLE 3. Hyper-parameters range values considered in the search for the
EGFR classification model.

A. HYPER-PARAMETERS SELECTION
The hyper-parameters selected for the CAE training on the
nodule and lung reconstruction tasks that achieved best
results are represented in Table 4. The best hyper-parameters
for the end-to-end model classification for EGFR mutation
status prediction are also presented in Table 5 for both nodule
and lung ROI.

TABLE 4. Hyper-parameters values selected for each nodule and lung
CAE training.

TABLE 5. Hyper-parameters values selected for EGFR mutation status
prediction, using the nodule and lung ROI.

B. EGFR CLASSIFICATION
Table 6 summarises the performance results obtained by
those experiments. Mean and standard deviation values of
AUC were computed for 20 random splits for training and
testing sets.

This study addressed an analysis of three different ROIs
for the lung tumor characterization by considering not only

TABLE 6. Classification results for lung axial slice EGFR mutation status
prediction. Mean AUC values are depicted for each experiment:
considering nodule, the lung containing nodule and both lungs in the CT
slice.

the nodule region but also the entire lung section in a 2D per-
spective using Transfer Learning techniques in CT images.
Regarding the evaluation process, the AUC was the main
performance metric used to assess the model ability to dis-
tinguish between the mutant and the wild classes. Giving
the small size of the database selected, especially the small
number of included EGFR mutant patients (23), the variance
of the performance of the model was large, which can be
confirmed on the high standard deviation values reported
over the random data splits. This evaluation approach was
followed to obtain a more realistic and overall perspective
on the prediction ability of the methods, not dependent on
some specific training data. For the same reason, giving the
large cost of a misclassified mutant examples on the test
set, decision metrics, such as Precision or Recall, were not
considered useful for performance assessment. Considering
the local nodule analysis, the characterization resulted in a
poor classification model to assess the EGFRmutation status
(AUC = 0.51), and showed that with the proposed approach
is not possible to capture enough information to predict
the EGFR mutation status. When extending the ROI to the
entire lung axial section, the best classification performance
(AUC = 0.68) was achieved when only including the lung
that contained the nodule, showing a decrease in the pre-
diction ability when both lungs were included in the anal-
ysed ROI (AUC = 0.60). All classification models were
implemented with a feature extractor based on a trained
Convolutional Autoencoder, reinforcing the relevance of the
learned features when trying to reconstruct the input image.
To the best of gathered knowledge, no other deep learning
based work attempted to assess the EGFR mutation sta-
tus using a lung holistic analysis. The results obtained in
this work did not outperform the state-of-the-art but indi-
cate a direction for future works dedicated to lung can-
cer characterization. Additionally, a direct comparison with
related studies, in particular, the ones with higher ability
to predict the EGFR mutation status would not bring a
fair discussion point to this investigation, given the fact
that the proposed approach addresses the lack of publicly
available data to perform this task, which is not a factor
that constrained the contribution of those studies. However,
quantitative direct comparisons on prediction results are obvi-
ously crucial for a more clear understanding of the research
evolution, increasing the need for more representative pub-
lic databases to allow fair and useful comparisons. Perfor-
mance comparisons between models trained and tested with
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different data do not allow clear and objective conclusions.
Nevertheless, the current work represents a comparative study
that contributes to the discussion about how complex and
extensive are the biological changes associated with cancer
development.

Considering the analysis proposed in the investigation of
the three different ROIs, results confirm the hypothesis that
a more extensive analysis of the lung structures combined
with nodule information gives a more accurate prediction
of the EGFR mutation status. The use of lung with tumor
axial slice input provided better results in EGFR assessment,
which emphasizes the idea behind the motivation of this
study that complex transformations related to lung cancer
might be present in other lung structures, and not only in
the nodule region. The traditional approaches dedicated to
lung cancer characterization were based only on the nodule
features [27], assuming that all the physiological changes
that can characterize the cancer development were based
on the cluster of the tumor cells. Only few recent works
showed the relevance of information from other parts of the
lung to predict the EGFR mutation status associated with
lung cancer [12], [13], [28], [29]. Our previous work [13]
compared approaches using nodule radiomic and semantic
features, and semantic information from other lung structures
as well. Results pointed out the importance to use comprehen-
sive approaches that take into consideration more elements
to characterize these extremely complex physiological pro-
cesses associated with lung cancer development. The current
work still indicates that a comprehensive approach adds infor-
mation that helps to characterize the EGFR mutations status.
However, the experiments also showed a lower performance
when analyzing both lungs compared to when the only lung
with the tumor is considered, which indicates that the nod-
ule and the near regions are the main contributions for the
model decision. From the current results, it is considered of
utmost importance to continue to investigate the relevance
of comprehensive approaches, bringing a new perspective
that might change the direction on this research topic, tra-
ditionally focused only on the nodule. However, to develop
models capable of making a more comprehensive analysis
with further potentially relevant information, more represen-
tative data of the population affected by lung cancer are
needed to enable such abstract and complex transformations
detection.

Although the presented study supported the idea that the
general features learned while reconstructing images in the
same domain can be transferred and be useful for several clas-
sification tasks, other strategies, which might present relevant
benefits, were identified and should also be discussed: the use
of a convolutional feature extractor trained for a related but
simpler classification problem (e.g. lung abnormalities detec-
tion), in the same domain; the use of a discriminator-based
feature extractor resultant from the development of Genera-
tive Adversarial Networks (GAN) models for the generation
of synthetic samples (e.g. lung axial slices). In the proposed
approach, the employed feature extractor was based on the

development of a CAE for image reconstructions in the same
domain of the final task, which is a Transfer Learning tech-
nique that already proved to be efficient in different biomed-
ical imaging problems, especially when only small datasets
are available [19], [30].

Having in mind other limitations that might have con-
strained the obtained results, the following deserve to be
discussed and analysed: regarding the data used to develop
the feature extractor in the nodule analysis, given the higher
number of benign nodules, comparing with the malignant
ones, it might have caused some lack on the ability to extract
useful features related to malignant cases only, and not both;
when conducting an investigation using a small size database,
the impact of possible technical and annotation mistakes on
the models is increased, and it should be considered in this
analysis.

Considering the higher performance achieved in previous
works with a mean AUC of 0.75 and 0.89 from [12], [13],
respectively, where semantic features related to both the nod-
ule and structures outside the nodule ROI were included,
it is possible to suggest that, with the available datasets,
working with qualitative assessed information might increase
chances of better EGFR mutation status predictions. With
deep learning based approaches, the larger set of deep fea-
tures extracted from a larger ROI might not work well
together with such a reduced dataset size, rising the idea that a
hybrid approachwhere deep features combinedwith semantic
EGFR-correlated information might gather the best of these
two approaches.

Finally, an important limitation in this work that should
also be noted relies on the number of studied genes. An inves-
tigation in imaging phenotypes of a more extensive list of
lung cancer-related genes is necessary to obtain a more com-
plete characterization, given the importance of other genes in
targeted therapies development.

IV. CONCLUSION
This study proposed an approach based on a pre-trained
encoder to work as a feature extractor, followed by an MLP
for the final classification of the EGFR mutation status.
Different regions of analysis were used in order to study the
relevance of information from all the lung structures in this
complex classification task. The results obtained showed that
information from more extensive regions on the lung con-
taining the nodule allow to capture information that might be
relevant for lung cancer characterization, which emphasizes
the importance of comprehensive approaches for an improved
performance.
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