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Abstract: The evolution of personalized medicine has changed the therapeutic strategy from
classical chemotherapy and radiotherapy to a genetic modification targeted therapy, and although
biopsy is the traditional method to genetically characterize lung cancer tumor, it is an invasive and
painful procedure for the patient. Nodule image features extracted from computed tomography
(CT) scans have been used to create machine learning models that predict gene mutation status in
a noninvasive, fast, and easy-to-use manner. However, recent studies have shown that radiomic
features extracted from an extended region of interest (ROI) beyond the tumor, might be more
relevant to predict the mutation status in lung cancer, and consequently may be used to significantly
decrease the mortality rate of patients battling this condition. In this work, we investigated the
relation between image phenotypes and the mutation status of Epidermal Growth Factor Receptor
(EGFR), the most frequently mutated gene in lung cancer with several approved targeted-therapies,
using radiomic features extracted from the lung containing the nodule. A variety of linear, nonlinear,
and ensemble predictive classification models, along with several feature selection methods, were
used to classify the binary outcome of wild-type or mutant EGFR mutation status. The results
show that a comprehensive approach using a ROI that included the lung with nodule can capture
relevant information and successfully predict the EGFR mutation status with increased performance
compared to local nodule analyses. Linear Support Vector Machine, Elastic Net, and Logistic
Regression, combined with the Principal Component Analysis feature selection method implemented
with 70% of variance in the feature set, were the best-performing classifiers, reaching Area Under
the Curve (AUC) values ranging from 0.725 to 0.737. This approach that exploits a holistic analysis
indicates that information from more extensive regions of the lung containing the nodule allows a
more complete lung cancer characterization and should be considered in future radiogenomic studies.
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1. Introduction

Lung cancer is the foremost determinant cancer death amongst men and women,
killing a vaster number of people than colon, breast, and prostate cancers combined [1]. This
is linked to the fact that it is often diagnosed in an advanced stage, with 5% or less chance
of a 5-year survival [2]. Non-Small-Cell Lung Carcinoma (NSCLC) is the most prevalent
histological type of lung cancer, covering about 85% of all lung cancer cases [3], and
Epidermal Growth Factor Receptor (EGFR) is the most frequently mutated gene that springs
lung cancer of type Adenocarcinoma [4]. The cell surface receptor EGFR is responsible for
cell growth and survival and its mutations promote EGFR permanent activation, which
contributes to uncontrolled cell division [5,6]. This genomic biomarker with clinically
approved therapies is now considered a strong prognostic indicator in lung cancer, rising
opportunities to explore treatment strategies that rely on the individual’s genetic profile [7].
Currently, biopsy is the primary method for characterizing lung cancer and identifying
EGFR mutation status, using an extracted tumor tissue sample for molecular analysis.
Nevertheless, this invasive procedure can lead to some associated side effects, as it can be
painful and risky for the patient. Recently, blood-based screening has been used to detect
early lung cancer diagnostic biomarkers [8]. However, despite being less invasive than
biopsy, this technique is still bothersome for the patient.

Computed tomography (CT) scans provide a reliable lung cancer characterization,
offering a faster and less invasive approach compared to traditional tissue biopsy [9].
Thereby, foretelling gene mutation status by CT can help determine the most appropriate
treatment for each subject, while decreasing medical complications [10]. Extracting quan-
titative features from CT images that are then used as inputs within a predictive model
that can directly classify the EGFR mutation status for lung cancer patients composes the
essence of radiogenomics, a field that correlates the radiomic features (image phenotype)
and genetic information (genotype) [11].

There are a few studies that used traditional statistical analysis and machine learning
(ML)-based approaches to demonstrate that the EGFR mutation status is correlated with CT
scan imaging phenotypes. Regarding the works that employed logistic regression models,
Digumarthy et al. [12] obtained an Area Under the Curve (AUC) of 0.73 applying only
radiomic features, which increased to 0.79 when clinical data was added. The study by
Mei et al. [13] resulted in an AUC of 0.58 and 0.66 implementing only radiomic features and
combination of radiomic and clinical features, respectively. Similarly, Liu et al. [14] showed
that adding radiomic features to a clinical model resulted in a significant improvement
of predicting power, as the AUC increased from 0.67 to 0.71, and Liu et al. [15] showed
that using clinical variables combined with CT features (AUC = 0.78) resulted in higher
AUC values, compared to using clinical variables alone (AUC = 0.69). Concerning the
ML domain, a decision tree was built to predict the presence of EGFR mutations using
a combination of four image features (emphysema, airway abnormality, the percentage
of ground glass component and the type of tumor margin), resulting in a test set per-
formance of 0.89 AUC [5]. A work based on a deep learning technique with automatic
nodule radiomic feature-learning ability achieved an AUC of 0.69 and showed a significant
improvement when hand-crafted CT features were combined with clinical characteristics
(AUC = 0.81) [10]. Velazquez et al. [16] found a radiomic signature related to radiographic
heterogeneity that successfully discriminated between mutant and wild-type EGFR cases
(AUC = 0.69). Combining this signature with a clinical model of EGFR status (AUC = 0.70)
significantly improved prediction performance (AUC = 0.75). A XGBoost classifier using
only radiomic and semantic features from the nodule obtained an AUC of 0.58 and 0.65,
respectively [4].

Previous studies have suggested that combining radiomic and semantic data allows
the development of integrated predictors that exhibit improved performance compared to
learning models that use only one type of data. However, there is an urgent need to create
learning models that use only radiomic features that are automatically extracted from
images, as these features are more objective than semantic data and allow to reduce the
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dependency on data annotation by experts in assessing mutational status while reducing
human error. Furthermore, the automatic detection of radiomic features from CT images is
an important tool to help radiologists with the extensive and exhaustive work of CT anno-
tation and overcome the lack of mass annotated datasets. Generally, the nodule is the main
focus for lung cancer malignancy assessment and follow-up based on the well-established
Fleischner Society and Lung-RADs Guidelines [17,18], and previous studies have analyzed
only this important cluster of tumor cells for EGFR mutation status prediction [10,14,16].
Exploratory studies have recently shown that there is a correlation of EGFR mutation
status with other lung diseases, such as emphysema and fibrosis, which seems to indicate
that cancer development is related to multiple physiological changes not restricted to the
nodule region [19,20], and that the inclusion of extratumor features allows a significant
increase in EGFR mutation predictive performance [4,5,21].

Therefore, the current work applies a comprehensive approach for predicting EGFR
mutation status, using only objective radiomic features directly extracted from a region
of interest (ROI) containing the entire lung where the nodule is located. The hypothesis
that it might be possible to develop predictive models with enhanced performance by
combining nodule-related features with features from other lung structures is the main
motivation for this work. This study includes combinations of six ML classification models—
Logistic Regression, Elastic Net, Support Vector Machine (SVM) with linear and radial basis
function (RBF) kernels, Random Forest, and Extreme Gradient Boosting (XGBoost)—and
nine feature selection methods—Pairwise correlation filter, Principal component analysis
(PCA) with feature set variance ranging from 65% to 95%, and QR decomposition, along
with a baseline where no feature selection is used.

2. Materials and Methods

This section presents the dataset used in the current study, the feature extraction
techniques and the classification methods employed. The pipeline implemented to predict
the EGFR mutation status is represented in Figure 1.

Pre-processing Feature Extraction Feature Selection Classification

CT scans
Nodule Mask

Molecular Info

Dataset
NSCLC

Radiogenomics

Pairwise correlation
PCA
QR decomposition
No filter

Logistic Regression
Elastic Net
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XGBoost
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Resample/

Normalization

Image Filters
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Figure 1. Overview of the classification approach for Epidermal Growth Factor Receptor (EGFR)
mutation status prediction. Computed tomography (CT) images and segmentation masks of the lung
are loaded into the software. Then, the wavelet and Laplacian of Gaussian (LoG) filters are applied
to the original image and 1316 radiomic features of the region of interest (ROI) are extracted using
the Pyradiomics package [22]. This process is performed for all images in the Non-Small-Cell Lung
Carcinoma (NSCLC) dataset. Finally, various combinations of six classification models, three feature
selection techniques, and a baseline without feature selection are implemented and compared.
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2.1. Dataset

In order to fulfill the objectives set for this work, the NSCLC-Radiogenomics Dataset [23]
was identified and used, as it comprises three fundamental requirements that were crucial for
the development of the present study: thoracic CT scans from NSCLC patients, tumor binary
segmentations, and EGFR mutation status labels. This dataset is a publicity available collection
of CT images from a NSCLC cohort of 211 subjects collected retrospectively between 2008
and 2012 at Stanford University School of Medicine and Palo Alto Veterans Affairs Healthcare
System. The CT scans are paired with patient clinical history and were obtained using
different scanner models and scanning protocols, presenting variations in slice thickness
from 0.625 to 3 mm (median: 1.5 mm) and X-ray tube current from 124 to 699 mA (mean:
220 mA) at 80–140 kVp (mean: 120 kVp). Additionally, binary nodule segmentation masks
are also stored in this database, as well as semantic tumor annotations. This dataset is
the only public dataset that comprises paired information on lung-cancer-related gene
mutation status and CT data; however, the present study focuses only on EGFR due to its
clinical relevance based on approved target therapies. Out of 211 subjects, only 116 lung
cancer patients from this database were considered since only these owned tumor binary
masks and a EGFR mutation test result (mutant: 20%, wild-type: 80% (see Figure 2)).

Figure 2. Representation of lung axial slices with nodule from the NSCLC-Radiogenomics dataset of
patients with (a) mutant EGFR and (b) wild-type EGFR.

2.2. Pre-Processing

Firstly, the CT image pixel values were converted from radiodensity values to Hounsfield
Units (HU) using the Rescale Slope and Rescale Intercept attributes stored in the metadata of the
scans. Then, the entire dataset (including the tumor masks) was resampled to standardize image
representations. The space between slices and pixel spacing were set to 1 mm and [1.0, 1.0] mm,
respectively, and each slice dimension was calculated to match this new spacing, obtaining the
resampled image by interpolation [24]. Additionally, all CT images were normalized between
−1000 HU and 400 HU using the min-max normalization method. CT values below −1000 HU,
corresponding to the radiodensity of air, were set to 0; values above 400 HU, representing hard
tissues, were fixed to 1. A linear transformation was computed to map all the intermediate HU
values to the [0,1] range. Lung binary masks were segmented using a 2D lung segmentation
model based on the U-Net architecture [25]. These lung regions underwent the same resampling
operation to match the dimensions of the corresponding CT, and all images were rescaled to a
size of N × 256 × 256 pixels, with N representing the number of slices of the correspondent CT
scan. To obtain the CT images with only the lung containing the nodule, the mask of the nodule
was superimposed on the lung segmentation in order to identify the lung where the nodule is
located in the selected axial CT slice. Then, the image was transformed to consider half of the
opposite side as background.
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2.3. Feature Extraction

The 1316 radiomic features available for this study quantified lung characteristics
from CT images and were extracted using the open source package Pyradiomics [22]. Lung
voxels were used in the extraction of seven classes of features: shape-based (14 features),
first-order (18 features), Gray Level Co-occurrence Matrix (GLCM) (24 features), Gray
Level Dependence Matrix (GLDM) (14 features), Gray Level Run Length Matrix (GLRLM)
(16 features), Gray Level Size Zone Matrix (GLSZM) (16 features) and Neighboring Gray
Tone Difference Matrix (NGTDM) (5 features). Shape features examine the size and shape
of the ROI, employing only the lung segmentation masks in the calculations. First-order
features describe the distribution of voxel intensities within the ROI using basic metrics
such as mean, median, range, and standard deviation. GLCM features describe the second-
order joint probability function of the ROI, while GLDM features quantify gray level
dependencies in the image. GLRLM features quantify the length of consecutive pixels that
have the same gray level intensity and GLSZM features quantify the number of connected
voxels that share the same gray level value. Finally, NGTDM features characterize the
difference between the gray value of a pixel and the average gray value of the neighboring
pixels within a defined distance [26].

The radiomic features were computed both on the original image (107 features) and
on images obtained after application of wavelet (744 features) and Laplacian of Gaussian
(LoG) (465 features) filters. The wavelet transform applies a wavelet filter to each CT
image, which is then decomposed in low and high frequencies into 8 different images. It
applies either a high-pass filter (represented as H) or a low-pass filter (represented as L)
in each one of the x, y, and z directions: LLH, LHL, LHH, HLL, HLH, HHL, HHH and
LLL [27]. The LoG filter yields a derived image for each applied sigma value in order to
emphasize areas of gray level change, where sigma defines how coarse the emphasized
texture should be [28]. In these studies, five filters with different sigma values were applied
(sigma = 1.0 mm, 2.0 mm, 3.0 mm, 4.0 mm, 5.0 mm).

2.4. Feature Selection Methods

The radiomic features were subjected to a feature selection process in order to prevent
overfitting, improve learning accuracy, and reduce computation time [29]. To this end,
we considered three feature selection techniques widely used in the radiogenomics field:
pairwise correlation filter, PCA, and QR decomposition. Additionally, a baseline was also
implemented where no feature selection method was used to compare the results obtained
with and without feature selection.

The pairwise correlation filter removes variables whose pairwise correlation is greater
than a specific cutoff. First, a correlation matrix is created with values representing the
pairwise correlations for all feature combinations. Then, features that have an absolute
pairwise correlation equal to or greater than the cutoff are excluded [30]. After investigating
multiple cutoffs, the cutoff value was set to 0.95.

PCA is a method that projects high-dimensional data into a new lower dimensional
representation while keeping all relevant linear structure intact. This method generates new,
uncorrelated variables that explain a large proportion of the variance in the original feature
space [31]. PCA was implemented at seven different cutoffs, where the number of compo-
nents accounted for percentages of variance in the feature set ranging from 65% to 95%.

The QR decomposition along with an iterative procedure is used to remove features
that are linear combinations of others. The feature matrix is decomposed into two matrices:
the orthogonal matrix Q and the upper-triangular matrix R. The latter is used to determine
which features are linearly dependent so that they can be sequentially removed [32].

2.5. Learning Models

Since we intended to explore different types of ML models, the predictive classifying
models used in this study are from three different families: linear, nonlinear, and ensemble.
The linear classifiers used include the Logistic Regression, Elastic Net, and Linear SVM
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models, while the nonlinear classifier includes the SVM algorithm with an RBF kernel. Of
the ensemble models, the Random Forest and the XGBoost were implemented.

Logistic Regression is a classification model that employs the sigmoid function as
a cost function in order to return a probability value that can be mapped to discrete
classes [33]. It is one of the simplest ML algorithms and is easy to implement, interpret,
and very efficient to train. Elastic Net regression is a penalized linear regression model
that imposes a linear combination of regularization penalties to the loss function during
training. These norm regularizations include both the L1 and L2 penalties, which are based
on the sum of the absolute coefficient values and the sum of the squared coefficient values,
respectively [34].

SVM is a discriminative classifier that transforms the original feature space into a
higher-dimensional space based on a user-defined kernel function and then finds support
vectors to maximize the margin separating the classes. New unlabeled samples are classi-
fied according to the side of the hyperplane they lie on [35]. Linear SVMs can only find
a decision boundary to classify linearly separable features. On the other hand, when the
dataset is separable by a nonlinear boundary, SVM uses nonlinear kernel functions, such
as the RBF, to overcome the curse of dimensionality and properly transform the feature
space. SVMs are powerful yet flexible supervised ML algorithms that are used in a variety
of applications, such as the diagnosis and prognosis of cancer and other diseases [36–40].

Random Forest classifier is a bagging-type ensemble method of decision trees that
trains several trees in parallel and aggregates the decisions of individual trees to reach
the final prediction. This classifier tends to outperform most other classification methods
in terms of accuracy, variance, and bias, without overfitting issues [41]. XGBoost is a
decision-tree-based ensemble algorithm that uses a gradient boosting framework and has
been widely used in lung cancer studies [4,42–44]. This classifier has been shown to yield
superior predictive results using less computing resources in the shortest amount of time
compared to other models due to its parallel processing, tree-pruning, sparse data handling,
and regularization to present overfitting [45].

2.6. Training

Data was randomly split into a training set (80%) and a test set (20%). The training and
testing processes were repeated for 50 random splits of the original dataset to investigate
data variance and for better performance robustness.

In the NSCLC-Radiogenomic dataset, the EGFR mutant is under-represented, resulting
in classifiers with poor predictive performance for this minority class. To overcome the class
imbalance, the Synthetic Minority Oversampling Technique (SMOTE) was applied for each
fold. This oversampling approach creates new random synthetic minority class instances
between the lines that connect each one of the k nearest neighbors of each minority class
sample [46]. This data augmentation technique made it possible to obtain a class-balanced
training set (consisting of the same number of mutant and wild-type samples), which was
then used to train the classifiers.

The classifier’s hyperparameters were tuned through a 5-fold cross-validation ran-
domized search on the training data. The range of hyperparameters considered for the six
classifiers are presented in Tables S1–S6 of the supplementary material.

Since Elastic Net is a regression model and not a classification model, predictions
for this algorithm were performed considering a decision threshold equal to 0.5. This
means that normalized predicted probabilities less than 0.5 were assigned to the wild-type
class EGFR and probability values greater than or equal to 0.5 were mapped to the mutant
class EGFR. On the other hand, for the classification models, the optimal threshold was
calculated from the Receiver Operating Characteristic (ROC) curve using the threshold-
moving method. This method uses the original training set to train the model and then
moves the decision threshold such that the minority class examples can be more easily
correctly predicted.
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2.7. Performance Metrics

For a better understanding of the predictive performance of each classifier and feature
selection method, different evaluation metrics were averaged over the 50 random train-test
splits. The AUC was computed, along with precision, sensitivity, and specificity.

3. Results

The number of radiomic features removed and retained after the implementation of
the nine feature selection methods is shown in Table 1.

The hyperparameters that achieved the best performance on the test set for each
classifier and feature selection method are shown in Tables S7–S12 of the supplementary
material. Furthermore, in the supplementary material, the AUC, precision, sensitivity, and
specificity metrics, for each classifier-feature selection method combination, can be found
in Tables S13–S18.

Table 1. Number of removed and retained features after the implementation of the pairwise correla-
tion filter, Principal component analysis (PCA) with feature set variance ranging from 65% to 95%,
and QR decomposition.

Feature Selection
Method

Number of Removed
Features

Number of Retained
Features

Pairwise correlation filter 1223 93
PCA 65% 1312 4
PCA 70% 1311 5
PCA 75% 1310 6
PCA 80% 1309 7
PCA 85% 1306 10
PCA 90% 1301 15
PCA 95% 1290 26

QR decomposition 988 328

Figure 3 gives the mean AUC (average value of all 50 results) for each classifier across
the various feature selection methods in a heatmap form, whereas Table 2 summarizes the
best performance results obtained in the present study for each one of the six classifiers.
SVM with linear kernel, Elastic Net, and Logistic Regression classifiers had the best overall
predictive performance and showed the best results when combined with the PCA feature
selection method with 70% of variance, presenting AUC values greater than 0.7. It can
thus be concluded that these classifiers performed well in predicting the EGFR mutation
status. In fact, the highest AUC was obtained with the Linear SVM classifier and the PCA
70% (AUC = 0.737 ± 0.018). Furthermore, the implementation of the Logistic Regression
classifier with PCA 70% resulted in the highest precision (Precision = 0.682 ± 0.099) and
sensitivity (Sensitivity = 0.699 ± 0.039) values. On the other hand, the XGBoost classifier
with PCA 70% achieved the highest specificity result (Specificity = 0.767 ± 0.017). Among
all feature selection methods, PCA yielded the highest AUC results on average in five of the
six classifiers studied, whereas QR decomposition held lower AUC values. The standard
deviations of all results are fairly similar, which shows that no metric had a significantly
higher or lower variance than the others.
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Table 2. Performance results of each classifier with the best AUC. For each combination of classifier and feature selection
method, the evaluation metrics AUC, precision, sensitivity, and specificity are presented as mean ± standard deviation.
AUC—Area Under the Curve; SVM—Support Vector Machine; XGBoost—Extreme Gradient Boosting; RBF—Radial Basis
Function.

Classifier Feature Selection AUC Precision Sensitivity Specificity

SVM (linear kernel) PCA 70% 0.737 ± 0.018 0.644 ± 0.012 0.615 ± 0.010 0.685 ± 0.095
Elastic Net PCA 70% 0.733 ± 0.011 0.585 ± 0.048 0.611 ± 0.033 0.715 ± 0.013

Logistic Regression PCA 70% 0.725 ± 0.012 0.682 ± 0.099 0.699 ± 0.039 0.743 ± 0.079
XGBoost PCA 70% 0.697 ± 0.032 0.640 ± 0.036 0.632 ± 0.040 0.767 ± 0.017

Random Forest No filter 0.696 ± 0.011 0.683 ± 0.090 0.688 ± 0.029 0.721 ± 0.012
SVM (RBF kernel) PCA 75% 0.583 ± 0.014 0.601 ± 0.008 0.530 ± 0.017 0.623 ± 0.009

Fe
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ct
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n 
M

et
ho

d

Classifier

Figure 3. Heatmap with the AUC of each classifier/feature selection combination. Dark colors stand
for the best results, while light colors represent the worst outcomes.
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4. Discussion

In this study, we assessed EGFR mutation status, using radiomic features extracted
from the entire lung volume containing the nodule on CT images. Six ML algorithms were
trained and used in conjunction with pairwise correlation, PCA, and QR decomposition
feature selection methods. These filtering techniques were employed since using too many
features in the classification algorithm can lead to overfitting, in which noise or irrelevant
features may exert undue influence on classification decisions. In addition, a baseline
without feature selection method was also implemented to compare results obtained with
and without feature selection.

The results of this study suggest that the linear learning models—SVM with linear
kernel, Elastic Net, and Logistic Regression—perform well with quantitative imaging
features as their predictors, whereas the SVM classifier based on the RBF kernel performs
poorly. Additionally, the commonly used classifiers, Random Forest and XGBoost, show ac-
ceptable performance results. Furthermore, we found that the model less used in radiomics
and radiogenomics, but commonly used in genomics—Elastic Net—was one of the best
performing classifiers, as shown in a previous study that investigated the ability of various
ML classifiers to accurately predict lung cancer nodule status [47]. The present work also
indicates that the Linear SVM classifier in conjunction with PCA feature selection with 70%
variance should be considered in future EGFR mutation status classification studies. In
our opinion, it is crucial to highlight the fact that linear models obtained the best results in
the present study, as it may change the direction and extend the use of simpler and more
interpretable models in seemingly complex problems.

We also show that, in general, feature selection methods that reduce the number of
features prior to model training appear to improve predictive performance compared to
previous radiomic analyses [47–50]. In the radiogenomics field, a large number of features
tend not to provide additional information because they are highly correlated and are
linear combinations of others. However, in ensemble learning models, such as Random
Forest and XGBoost, which perform automatic feature selection, additional feature filtering
does not seem to have a significant impact on model performance. Considering the feature
selection methods, it was not possible to identify the one that gives better results for all
classifiers since the models are defined with different mathematical principles and optimize
different parameters; as a consequence, different classifiers provide better results when
combined with different numbers of radiomic features. Nevertheless, based on the best
results per feature selection method, we recommend considering the PCA method with
70% and 75% of variance over the pairwise correlation filter and QR decomposition, as
these two methods seem to remove very important features for model predictions.

Considering approaches that employ only radiomic features, the outcomes of this work
show that radiomic characteristics from the entire lung containing the nodule provided
better results in EGFR mutation status assessment compared to traditional nodule-based
approaches and to other methodologies that consider other lung structures [4,5,14,51].
However, direct performance comparisons between models trained and tested with data
from different datasets would not bring a fair discussion point to this study. Nevertheless,
the results of the current study indicate that the CT features with the highest correlation
with EGFR mutation are from the lung that has the nodule and these are therefore the
main contributors to the model decision. It is crucial to highlight these results and further
investigate the importance of holistic lung cancer characterization studies, as there are
many complex combinations of morphological, molecular, and genetic alterations that
occur during lung cancer development that, when taken into account, would allow the
development of more accurate classifiers for EGFR mutation status prediction [21].

The biggest limitation of this work is the reduced size of the used dataset, which is
unrepresentative of the population characteristics, making it difficult to find a relevant
pattern for such a complex problem. Furthermore, deep learning approaches, such as
convolutional neural networks (e.g., CNN and 2D-CNN) and recurrent neural networks
(e.g., LSTM and BiLSTM), are powerful methods for EGFR mutation status assessment.
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However, data limitation does not allow the use of these end-to-end techniques based
on deep learning. To increase the chances of better EGFR mutation status predictions,
it is necessary to develop reproducible, clinically viable, and robust predictive models
that can handle population heterogeneities. For this, a large and heterogeneous cohort
of patients affected by lung cancer is crucial, as well as methods capable of coping with
data heterogeneity. However, data access and uniform acquisition, along with privacy
issues, fees, and data management requirements are the main limitations in clinical and
imaging data access. Another limitation relies on the fact that only the most frequent
oncogene in lung cancer was studied. As future work, it is important to analyze other
feature selection techniques, such as Linear discriminant analysis, which, in addition
to being a prediction model, can be used as a dimensionality reduction technique and
autoencoder-based architecture. Additionally, it is also important to analyze whether
the feature selection methods implemented in the studies can be used, for example, as
information gain or mutual information in order to better understand how the selection
techniques affect the features and consequently the performance of the learning models. It
is also relevant in the future to consider other lung-cancer-related genes in order to obtain
a more complete characterization, which would have an important impact on new targeted
personalized therapies.

5. Conclusions

Predicting EGFR mutation status by CT imaging can improve the determination of the
most appropriate treatment for each lung cancer patient and is a less invasive alternative
compared to the traditional biopsy. This study proposed a comprehensive approach for the
classification of EGFR mutation status using only radiomic features extracted from a ROI
containing the entire lung where the nodule is located, changing the direction of traditional
approaches, which until now have been mainly focused on the nodule. The results obtained
with this novel and holistic approach showed that information from more extensive regions
of the lung containing the nodule allows for a more complete lung cancer characterization.
Our work suggested that Linear SVM, Elastic Net, and Logistic Regression are the most
robust models for EGFR mutation status prediction and supports their use by others in
future radiogenomics studies. Furthermore, we recommend the application of methods that
reduce the number of features prior to model training, in particular, PCA methods, as they
seem to improve predictive performance. We also encourage the study and comparison
of various features and modeling approaches for predicting EGFR mutation status since
improvements in prediction are often achieved when different combinations are utilized.
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