143,852 research outputs found

    Modelling Intermediate Age and Old Stellar Populations in the Infrared

    Get PDF
    We have investigated the spectro-photometric properties of the Asymptotic Giant Branch (AGB) stars and their contribution to the integrated infrared emission in simple stellar populations (SSP). Adopting analytical relations describing the evolution of these stars in the HR diagram and empirical relations for the mass-loss rate and the wind terminal velocity, we were able to model the effects of the dusty envelope around these stars, with a minimal number of parameters. We computed isochrones at different age and initial metal content. We compare our models with existing infrared colors of M giants and Mira stars and with IRAS PSC data. Contrary to previous models, in the new isochrones the mass-loss rate, which establishes the duration of the AGB phase, also determines the spectral properties of the stars. The contribution of these stars to the integrated light of the population is thus obtained in a consistent way. We find that the emission in the mid infrared is about one order of magnitude larger when dust is taken into account in an intermediate age population, irrespective of the particular mixture adopted. The dependence of the integrated colors on the metallicity and age is discussed, with particular emphasis on the problem of age-metallicity degeneracy. We show that, contrary to the case of optical or near infrared colors, the adoption of a suitable pass-band in the mid infrared allows a fair separation of the two effects. We suggest intermediate redshift elliptical galaxies as possible targets of this method of solving the age-metallicity dilemma. The new SSP models constitute a first step in a more extended study aimed at modelling the spectral properties of the galaxies from the ultraviolet to the far infrared.Comment: 16 pages, 10 figures, to appear in A&

    Meson decay in the Fock-Tani Formalism

    Full text link
    The Fock-Tani formalism is a first principle method to obtain effective interactions from microscopic Hamiltonians. Usually this formalism was applied to scattering, here we introduced it to calculate partial decay widths for mesons.Comment: Presented at HADRON05 XI. "International Conference on Hadron Spectroscopy" Rio de Janeiro, Brazil, August 21 to 26, 200

    A coordinate-dependent superspace deformation from string theory

    Get PDF
    Starting from a type II superstring model defined on R2,2×CY6R^{2,2}\times CY_6 in a linear graviphoton background, we derive a coordinate dependent CC-deformed N=1{\cal N}=1, d=2+2d=2+2 superspace. The chiral fermionic coordinates θ\theta satisfy a Clifford algebra, while the other coordinate algebra remains unchanged. We find a linear relation between the graviphoton field strength and the deformation parameter. The null coordinate dependence of the graviphoton background allows to extend the results to all orders in α\alpha'.Comment: 14 pages, reference added, accepted for publication in JHE

    Physics of collisionless shocks - theory and simulation

    Get PDF
    Collisionless shocks occur in various fields of physics. In the context of space and astrophysics they have been investigated for many decades. However, a thorough understanding of shock formation and particle acceleration is still missing. Collisionless shocks can be distinguished into electromagnetic and electrostatic shocks. Electromagnetic shocks are of importance mainly in astrophysical environments and they are mediated by the Weibel or filamentation instability. In such shocks, charged particles gain energy by diffusive shock acceleration. Electrostatic shocks are characterized by a strong electrostatic field, which leads to electron trapping. Ions are accelerated by reflection from the electrostatic potential. Shock formation and particle acceleration will be discussed in theory and simulations

    The impact of kinetic effects on the properties of relativistic electron-positron shocks

    Get PDF
    We assess the impact of non-thermally shock-accelerated particles on the magnetohydrodynamic (MHD) jump conditions of relativistic shocks. The adiabatic constant is calculated directly from first principle particle-in-cell simulation data, enabling a semi-kinetic approach to improve the standard fluid model and allowing for an identification of the key parameters that define the shock structure. We find that the evolving upstream parameters have a stronger impact than the corrections due to non-thermal particles. We find that the decrease of the upstream bulk speed yields deviations from the standard MHD model up to 10%. Furthermore, we obtain a quantitative definition of the shock transition region from our analysis. For Weibel-mediated shocks the inclusion of a magnetic field in the MHD conservation equations is addressed for the first time

    Electromagnetic field generation in the downstream of electrostatic shocks due to electron trapping

    Get PDF
    A new magnetic field generation mechanism in electrostatic shocks is found, which can produce fields with magnetic energy density as high as 0.01 of the kinetic energy density of the flows on time scales ~104ωpe1 \tilde \, 10^4 \, {\omega}_{pe}^{-1}. Electron trapping during the shock formation process creates a strong temperature anisotropy in the distribution function, giving rise to the pure Weibel instability. The generated magnetic field is well-confined to the downstream region of the electrostatic shock. The shock formation process is not modified and the features of the shock front responsible for ion acceleration, which are currently probed in laser-plasma laboratory experiments, are maintained. However, such a strong magnetic field determines the particle trajectories downstream and has the potential to modify the signatures of the collisionless shock

    Magnetization reversals in a disk-shaped small magnet with an interface

    Full text link
    We consider a nanodisk possessing two coupled materials with different ferromagnetic exchange constant. The common border line of the two media passes at the disk center dividing the system exactly in two similar half-disks. The vortex core motion crossing the interface is investigated with a simple description based on a two-dimensional model which mimics a very thin real material with such a line defect. The main result of this study is that, depending on the magnetic coupling which connects the media, the vortex core can be dramatically and repeatedly flipped from up to down and vice versa by the interface. This phenomenon produces burst-like emission of spin waves each time the switching process takes place.Comment: 11 pages, 10 figure

    Controlled Shock Shells and Intracluster Fusion Reactions in the Explosion of Large Clusters

    Full text link
    The ion phase-space dynamics in the Coulomb explosion of very large (106107\sim 10^6 - 10^7 atoms) deuterium clusters can be tailored using two consecutive laser pulses with different intensities and an appropriate time delay. For suitable sets of laser parameters (intensities and delay), large-scale shock shells form during the explosion, thus highly increasing the probability of fusion reactions within the single exploding clusters. In order to analyze the ion dynamics and evaluate the intracluster reaction rate, a one-dimensional theory is used, which approximately accounts for the electron expulsion from the clusters. It is found that, for very large clusters (initial radius \sim 100 nm), and optimal laser parameters, the intracluster fusion yield becomes comparable to the intercluster fusion yield. The validity of the results is confirmed with three-dimensional particle-in-cell simulations.Comment: 25 pages, 11 figures, to appear in Physical Review
    corecore