16 research outputs found

    Polarisation measurements with a CdTe pixel array detector for Laue hard X-ray focusing telescopes

    Get PDF
    Polarimetry is an area of high energy astrophysics which is still relatively unexplored, even though it is recognized that this type of measurement could drastically increase our knowledge of the physics and geometry of high energy sources. For this reason, in the context of the design of a Gamma-Ray Imager based on new hard-X and soft gamma ray focusing optics for the next ESA Cosmic Vision call for proposals (Cosmic Vision 2015-2025), it is important that this capability should be implemented in the principal on-board instrumentation. For the particular case of wide band-pass Laue optics we propose a focal plane based on a thick pixelated CdTe detector operating with high efficiency between 60-600 keV. The high segmentation of this type of detector (1-2 mm pixel size) and the good energy resolution (a few keV FWHM at 500 keV) will allow high sensitivity polarisation measurements (a few % for a 10 mCrab source in 106s) to be performed. We have evaluated the modulation Q factors and minimum detectable polarisation through the use of Monte Carlo simulations (based on the GEANT 4 toolkit) for on and off-axis sources with power law emission spectra using the point spread function of a Laue lens in a feasible configuration.Comment: 10 pages, 6 pages. Accepted for publication in Experimental Astronom

    Dual-Cathode CsI Covered Microstrip Plate as VUV High Efficiency Photosensor

    Get PDF
    A Gas Proportional Scintillation Counter based on a dual-cathode Microstrip Plate covered with a CsI film is described. This new dual-cathode technique has the advantage of increasing the VUV sensitive area of the Microstrip Plate. A detailed description of the technique is presented together with a discussion of the performance. The results obtained for a xenon filled Gas Proportional Scintillation Counter show an improvement of the energy resolution for 5.9 keV X-rays from 12.7%, for a single cathode device, to 11.1% for the dual-cathode devic

    A focal plane detector design for a wide-band Laue-lens telescope

    Get PDF
    The energy range above 60 keV is important for the study of many open problems in high energy astrophysics such as the role of Inverse Compton with respect to synchrotron or thermal processes in GRBs, non thermal mechanisms in SNR, the study of the high energy cut-offs in AGN spectra, and the detection of nuclear and annihilation lines. Recently the development of high energy Laue lenses with broad energy bandpasses from 60 to 600 keV have been proposed for a Hard X ray focusing Telescope (HAXTEL) in order to study the X-ray continuum of celestial sources. The required focal plane detector should have high detection efficiency over the entire operative range, a spatial resolution of about 1 mm, an energy resolution of a few keV at 500 keV and a sensitivity to linear polarization. We describe a possible configuration of the focal plane detector based on several CdTe/CZT pixelated layers stacked together to achieve the required detection efficiency at high energy. Each layer can operate both as a separate position sensitive detector and polarimeter or work with other layers to increase the overall photopeak efficiency. Each layer has a hexagonal shape in order to minimize the detector surface required to cover the lens field of view. The pixels would have the same geometry so as to provide the best coupling with the lens point spread function and to increase the symmetry for polarimetric studies.Comment: 10 pages, 9 figure

    A Balloon-Borne 3D CZT Scattering Polarimeter for Hard X-Ray Astrophysics

    Get PDF
    It is widely recognised that a measurement of the polarization of the high energy emission from cosmic sources is a key observational parameter which will aid in the understanding of the nature of high energy cosmic ray astrophysics. Therefore new instrumentation operating in this energy range should exhibit a good sensitivity also for this type of measurements Herein we present the concept of a small high performance detector optimized for polarimetry between 100 and 500 keV suitable for use with a stratospheric balloon-borne payload dedicated to obtaining accurate measurements of the polarization of the Crab pulsar. The detector with 3D spatial resolution is based on CZT spectrometer sensitive units in a highly segmented configuration suitable for operation as a high quality scattering polarimeter. We describe recent development results and possible improvement currently under study. The proposed payload can be also considered as a pathfinder for a high performance focal plane detector for the next generation of hard X and soft gamma ray telescopes based on Laue lenses

    All-sky Medium Energy Gamma-ray Observatory: Exploring the Extreme Multimessenger Universe

    Get PDF
    The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a probe class mission concept that will provide essential contributions to multimessenger astrophysics in the late 2020s and beyond. AMEGO combines high sensitivity in the 200 keV to 10 GeV energy range with a wide field of view, good spectral resolution, and polarization sensitivity. Therefore, AMEGO is key in the study of multimessenger astrophysical objects that have unique signatures in the gamma-ray regime, such as neutron star mergers, supernovae, and flaring active galactic nuclei. The order-of-magnitude improvement compared to previous MeV missions also enables discoveries of a wide range of phenomena whose energy output peaks in the relatively unexplored medium-energy gamma-ray band

    Dual-Cathode CsI Covered Microstrip Plate as VUV High Efficiency Photosensor

    Get PDF
    A Gas Proportional Scintillation Counter based on a dual-cathode Microstrip Plate covered with a CsI film is described. This new dual-cathode technique has the advantage of increasing the VUV sensitive area of the Microstrip Plate. A detailed description of the technique is presented together with a discussion of the performance. The results obtained for a xenon filled Gas Proportional Scintillation Counter show an improvement of the energy resolution for 5.9 keV X-rays from 12.7%, for a single cathode device, to 11.1% for the dual-cathode devic

    Hard X-ray and Soft Gamma Ray Polarimetry with CdTe/CZT Spectro-Imager

    Get PDF
    CdTe/CZT based spectroscopic two-dimensional (2D)/three-dimensional (3D) imagers when operated in the Compton regime can work as high performance scattering polarimeters, for high-energy astrophysics. Polarimetry in high-energy astrophysics has been little explored. To date, X- and γ-ray source emissions have been studied almost exclusively through spectral, imaging, and timing analysis. Polarization measurements provide two additional observational parameters: the polarization angle and the level of linear polarization. These additional parameters should allow for a better discrimination between the physical mechanisms of different emission models characterizing a celestial object. Therefore, polarimetry will play a strategic role in new instrumentations for future high-energy astronomy missions. 2D and 3D CZT/CdTe spectroscopic imagers provided with coincidence readout logic can efficiently handle scattering events to perform simultaneously polarization, spectroscopy, imaging, and timing measurements. Herein, we describe the results obtained, both experimentally and by MC simulations, with CdTe/CZT pixel detector prototypes in high-energy polarimetry. We give an overview on the achievable polarimetric performance with spectroscopic imagers and on how these performances are affected by detector configuration parameters. Finally, we address the perspective of scattering polarimetry opened by the recent implementation of new high energy focusing optics, as broadband Laue lens, in next generation of hard X- and soft γ-ray astronomy instrumentation. The unprecedented sensitivity achievable by these telescopes will definitely open the window of polarimetry in this high-energy range

    A Polarimetric Experiment With a Laue Lens and CZT Pixel Detector

    No full text
    A new generation of high sensitivity telescopes based on the use of Laue lenses coupled with high efficiency solid state focal plane detectors has been identified as a possibility for hard X and soft gamma ray astronomy. For this kind of space mission, polarimetry is recognized as a very important observational parameter and therefore this capability should be included as one of the primary scientific requirements. In this framework our group has realized an experiment to demonstrate that the combination of a Laue Lens, built using Cu mosaic crystals, with a CZT pixel detector is capable of measuring the polarization of hard X ray sources contemporaneously with spectroscopy and imaging. This experiment was performed at the beginning of March 2008 using the ID15B beam line at ESRF (Grenoble). The instrument was based on a pixel CZT detector (5 mm thick array with 11 x 11 pixels of 2.5 x 2.5 mm(2) with a sensitive area of 3 x 3 cm(2) in conjunction with a mosaic Cu crystal (15 x 15 mm(2), 4 mm thick) used in the Laue diffraction configuration. During the tests the Cu crystal was rotated so as to simulate a Laue lens ring, and the detector was moved in order to have the diffracted beam always impinging on the same pixel. The ID15B beamline allowed us to test the response of this system to almost 100% linearly polarized photons at similar to 90, 270, and 350 keV. In this paper, we describe the experimental setup and we report on the first results, with particular emphasis on the evaluation of possible systematic effects introduced in the detected polarization of the impinging photons by the Laue diffraction process
    corecore