839 research outputs found

    Joining by forming of lightweight sandwich composite panels

    Get PDF
    Este trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&CA) 2016 do Instituto Politécnico de Lisboa. Código de referência IPL/2016/CompSBJ_ISELThis paper presents a new joining by forming process to assemble longitudinally two metal-polymer sandwich composite panels perpendicular to one another. The process combines sheet-bulk forming with mortise-and-tenon joints to produce mechanically interlocked joints with large and stiff flat-shaped heads. Experimentation and finite element modelling with representative unit cells give support to the presentation and special emphasis is placed on the application of the process to the fabrication of lightweight composite panels for structural applications. Failure of the joints takes place by cracking and not by disassembling after unbending the flat-shaped head of the joint back to its original shape. The required forces to produce the new type of joints are below 15 kN, allowing them to be an easy to implement alternative to existing solutions based on adhesives or fasteners.info:eu-repo/semantics/publishedVersio

    Physiological and biochemical responses of Eucalyptus seedlings to hypoxia

    Get PDF
    International audienceAbstractKey messageHypoxia promoted distinct changes in the levels of hormones, amino acids and organic acids in the roots and shoots of a seedling from 2Eucalyptusclones. These results indicate that modulation of hormone production, as well as specific chemical constituents associated with primary metabolism, contributes to the regulation of growth ofEucalyptusseedlings under hypoxic conditions.ContextAlthough floods in areas under Eucalyptus cultivation in Brazil negatively affect plant growth, chemical markers and/or indicators of hypoxia contributes to the regulation.sAimsThis study aimed to evaluate the hormonal and metabolic alterations induced by hypoxia on seedling growth.MethodsSeedlings of Eucalyptus urograndis clones VCC 975 and 1004 were grown in liquid solution and submitted to bubbling with air or with nitrogen. Levels of indol-3-acetic acid (IAA), abscisic acid (ABA), ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), primary metabolite profile and photosynthetic parameters were evaluated after fourteen days.ResultsHypoxia did not affect shoot dry mass of the seedlings. However, it decreased stomatal conductance and photosynthetic CO2 assimilation rate, and increased levels of ABA in the shoot. Hypoxia greatly reduced the dry mass and volume of roots, concomitantly with higher ACC and ethylene production. Moreover, hypoxia promoted distinct changes in IAA levels, and in amino acid and organic acid metabolism in roots and shoots.ConclusionThe biosynthesis of ABA, ethylene and IAA and its quantity in root tissues indicates the regulation of metabolism in response to hypoxia in Eucalyptus clones

    Surface modification of silica-based marine sponge bioceramics induce hydroxyapatite formation

    Get PDF
    Marine biomaterials are a new emerging area of research with significant applications. Recently, researchers are dedicating considerable attention to marine-sponge biomaterials for various applications. We have focused on the potential of biosilica from Petrosia ficidormis for novel biomedical/industrial applications. A bioceramic structure from this sponge was obtained after calcination at 750ºC for 6 hours in a furnace. The morphological characteristics of the 3D architecture were evaluated by scanning electron microscopy (SEM) and micro-computed tomography revealing a highly porous and interconnected structure. The skeleton of Petrosia ficidormis is a siliceous matrix composed of SiO2, which does not present inherent bioactivity. Induction of bioactivity was attained by subjecting the bioceramics structure to an alkaline treatment (KOH 2M) and acidic treatment (HCl 2M) for 1 and 3 hours. In vitro bioactivity of the bioceramics structure was evaluated in simulated body fluid (SBF), after 7 and 14 days. Observation of the structures by SEM, coupled with spectroscopic elemental analysis (EDS), has shown that the surface morphology presented a calcium-phosphate CaP coating, similar to hydroxyapatite (HA). The determination of the Ca/P ratio, together with the evaluation of the characteristic peaks of HA by infra-red spectroscopy and X-ray diffraction, have proven the existence of HA. In vitro biological performance of the structures was evaluated using an osteoblast cell line andthe acidic treatment has shown to be the most effective treatment. Cells were seeded on the bioceramics structures and their morphology, viability and growth was evaluated by SEM, MTS assay and DNA quantification, respectively, demonstrating that cells are able to grow and colonize the bioceramic structures.Alexandre Barros is grateful for financial support of FCT through Grant EXP/QEQ-EPS/0745/2012, SWIMS - Subcritical Water Isolation of compounds from Marine Sponges. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under Grant REGPOT-CT2012-316331-POLARIS and under Grant no KBBE-2010-266033 (project SPECIAL). Funding from the project "Novel smart and biomimetic materials for innovative regenerative medicine approaches" RL1-ABMR-NORTE-01-0124-FEDER-000016) cofinanced by North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF) is also acknowledged

    Water and carbon dioxide: green solvents for the extraction of collagen/gelatin from marine sponges

    Get PDF
    "Publication Date (Web): December 23, 2014"Marine sponges are extremely rich in natural products and are considered a promising biological resource. The major objective of this work is to couple a green extraction process with a natural origin raw material to obtain sponge origin collagen/gelatin for biomedical applications. Marine sponge collagen has unique physicochemical properties, but its application is hindered by the lack of availability due to inefficient extraction methodologies. Traditional extraction methods are time consuming as they involve several operating steps and large amounts of solvents. In this work, we propose a new extraction methodology under mild operating conditions in which water is acidified with carbon dioxide (CO2) to promote the extraction of collagen/gelatin from different marine sponge species. An extraction yield of approximately 50% of collagen/gelatin was achieved. The results of Fourier transformed infrared spectroscopy (FTIR), circular dichroism (CD), and differential scanning calorimetry (DSC) spectra suggest a mixture of collagen/gelatin with high purity, and the analysis of the amino acid composition has shown similarities with collagen from other marine sources. Additionally, in vitro cytotoxicity studies did not demonstrate any toxicity effects for three of the extracts.The authors are grateful for financial support of FCT through Grant EXP/QEQ:EPS/0745/2012, SWIMS (Subcritical Water Isolation of compounds from Marine Sponges). The funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement numbers REGPOT-CT2012-316331-POLARIS and KBBE-2010-266033 (project SPECIAL), as well as from ERDF under the project "Novel smart and biomimetic materials for innovative regenerative medicine approaches" RLI-ABMR-NORTE-01-0124-FEDER-000016), cofinanced by North Portugal Regional Operational Programme (ON.2,O Novo Norte), under the National Strategic Reference Framework (NSRF) are also gratefully ackowledged. The authors are also truly thankfull to Prof. Micha flan (Tel Aviv University, Israel), Dr. Ronald Osinga (Porifarma, The Netherlands), Dr. Antonio Sara and Dr. Martina Milanese (Studio Associato GAIA, Italy), and Dr. Joana Xavier (University of Azores) for the kind offer of marine sponges samples

    Molecular diversity and the fate of biochemical fractions of eucalypt tissues in soil

    Get PDF
    The molecular diversity of the source substrate has been regarded as a significant controller of the proportion of plant material that is either mineralized or incorporated into soil organic matter (SOM). However, quantitative parameters to express substrate molecular diversity remain elusive. In this research, we fractionated leaves, twigs, bark, and root tissues of 13C-enriched eucalypt seedlings into hot water extractables (HWE), total solvent (acetone) extractables (TSE), a cellulosic fraction (CF), and the acid unhydrolyzable residue (AUR). We used 13C NMR spectroscopy to obtain a molecular diversity index (MDI) based on the relative abundance of carbohydrate, protein, lignin, lipid, and carbonyl functional groups within the biochemical fractions. Subsequently, we obtained artificial plant organs containing fixed proportions (25%) of their respective biochemical fractions to be incubated with soil material obtained from a Haplic Ferralsol for 200-days, under controlled temperature (25 ± 1 ◦C) and moisture adjusted to 70–80% of the soil water holding capacity. Our experimental design was a randomized complete block design, arranged according to a factorial scheme including 4 plant organs, 4 biochemical fractions, and 3 blocks as replicates. During the incubation, we assessed the evolution of CO2 from the microcosms after 1, 2, 3, 4, 7, 10, 13, 21, 28, 38, 45, 70, 80, 92, 112, 148, 178 and 200 days from the start of the incubation. After the incubation, soil subsamples were submitted to a density fractionation to separate the light fraction of SOM (LFOM) i.e., with density <1.8 g cm 3. The heavy fraction remaining was submitted to wetsieving yielding the sand-sized SOM (SSOM) and the mineral-associated SOM (MAOM), with particle-size greater and smaller than 53 μm, respectively. We found that HWE and AUR exhibited comparatively higher MDIs than the TSE and CF. During the incubation, HWE and CF were the primary sources of 13C-CO2 from all plant organs and after 92 days, the respiration of the TSE of bark and roots increased. Otherwise, the AUR contributed the least for the release of 13C-CO2. There were no significant relationships between the MDI and the amount of 13C transferred into the LFOM or SSOM. Otherwise, the transfer of 13C into the MAOM increased as a linear-quadratic function of MDI, which in turn was negatively correlated with the total 13C-CO2 loss. Overall, the MDI exerted a stronger control on the 13C-labeled MAOM than on 13C-CO2 emissions, highlighting the need to improve our ability to distinguish and quantify direct plant inputs from those of microbial origin entering soil C pools.publishedVersio

    Hot Electrons, Hot Holes, or Both? Tandem Synthesis of Imines Driven by the Plasmonic Excitation in Au/CeO2 Nanorods

    Get PDF
    Solar-to-chemical conversion via photocatalysis is of paramount importance for a sustainable future. Thus, investigating the synergistic effects promoted by light in photocatalytic reactions is crucial. The tandem oxidative coupling of alcohols and amines is an attractive route to synthesize imines. Here, we unravel the performance and underlying reaction pathway in the visible-light-driven tandem oxidative coupling of benzyl alcohol and aniline employing Au/CeO2 nanorods as catalysts. We propose an alternative reaction pathway for this transformation that leads to improved efficiencies relative to individual CeO2 nanorods, in which the localized surface plasmon resonance (LSPR) excitation in Au nanoparticles (NPs) plays an important role. Our data suggests a synergism between the hot electrons and holes generated from the LSPR excitation in Au NPs. While the oxygen vacancies in CeO2 nanorods trap the hot electrons and facilitate their transfer to adsorbed O2 at surface vacancy sites, the hot holes in the Au NPs facilitate the α-H abstraction from the adsorbed benzyl alcohol, evolving into benzaldehyde, which then couples with aniline in the next step to yield the corresponding imine. Finally, cerium-coordinated superoxide species abstract hydrogen from the Au surface, regenerating the catalyst surface

    Hot Electrons, Hot Holes, or Both? Tandem Synthesis of Imines Driven by the Plasmonic Excitation in Au/CeO(2)Nanorods

    Get PDF
    Solar-to-chemical conversion via photocatalysis is of paramount importance for a sustainable future. Thus, investigating the synergistic effects promoted by light in photocatalytic reactions is crucial. The tandem oxidative coupling of alcohols and amines is an attractive route to synthesize imines. Here, we unravel the performance and underlying reaction pathway in the visible-light-driven tandem oxidative coupling of benzyl alcohol and aniline employing Au/CeO(2)nanorods as catalysts. We propose an alternative reaction pathway for this transformation that leads to improved efficiencies relative to individual CeO(2)nanorods, in which the localized surface plasmon resonance (LSPR) excitation in Au nanoparticles (NPs) plays an important role. Our data suggests a synergism between the hot electrons and holes generated from the LSPR excitation in Au NPs. While the oxygen vacancies in CeO(2)nanorods trap the hot electrons and facilitate their transfer to adsorbed O(2)at surface vacancy sites, the hot holes in the Au NPs facilitate the alpha-H abstraction from the adsorbed benzyl alcohol, evolving into benzaldehyde, which then couples with aniline in the next step to yield the corresponding imine. Finally, cerium-coordinated superoxide species abstract hydrogen from the Au surface, regenerating the catalyst surface.Peer reviewe
    • …
    corecore