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ABSTRACT 

Marine biomaterials are a new emerging area of research with significant applications. 

Recently, researchers are dedicating considerable attention to marine-sponge biomaterials for 

various applications. We have focused on the potential of biosilica from Petrosia ficidormis for 

novel biomedical/industrial applications. A bioceramic structure from this sponge was obtained 

after calcination at 750ºC for 6 hours in a furnace. The morphological characteristics of the 3D 

architecture were evaluated by scanning electron microscopy (SEM) and micro-computed 

tomography revealing a highly porous and interconnected structure. The skeleton of Petrosia 

ficidormis is a siliceous matrix composed of SiO2, which does not present inherent bioactivity. 

Induction of bioactivity was attained by subjecting the bioceramics structure to an alkaline 

treatment (KOH 2M) and acidic treatment (HCl 2M) for 1 and 3 hours. In vitro bioactivity of the 

bioceramics structure was evaluated in simulated body fluid (SBF), after 7 and 14 days. 

Observation of the structures by SEM, coupled with spectroscopic elemental analysis (EDS), has 

shown that the surface morphology presented a calcium-phosphate CaP coating, similar to 

hydroxyapatite (HA). The determination of the Ca/P ratio, together with the evaluation of the 

characteristic peaks of HA by infra-red spectroscopy and X-ray diffraction, have proven the 

existence of HA. In vitro biological performance of the structures was evaluated using an 

osteoblast cell line andthe acidic treatment has shown to be the most effective treatment. Cells 

were seeded on the bioceramics structures and their morphology, viability and growth was 

evaluated by SEM, MTS assay and DNA quantification, respectively, demonstrating that cells 

are able to grow and colonize the bioceramic structures. 

Keywords: Marine Sponge, bioactivity, Biosilica, scaffold; tissue engineering. 

  

Page 2 of 31

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 3

1. INTRODUCTION 

The study of marine natural products continues to expand with a steady increase in the 

annual number of new compounds described and also with the number of registered patents1-3. 

Last decade, comprehensive reviews have systematically pointed to sponges (Porifera) as the 

most promising for blue biotechnology, as they constantly rank first for the number of derived 

novel metabolites with pharmaceutical potential (e.g., anticancer, antiviral, anti-inflammatory) 2, 

3.  

The leading role of Porifera within blue biotechnology stems from their long 

evolutionary history and extreme plasticity. Sponges are the oldest phylum in the animal 

kingdom dating back to over 600 million years 4, and one of the most versatile on earth. With 

over 8000 existing species distributed across all aquatic environments, sponges have been able to 

specialize and adapt to an extraordinarily variety of habitats (from tropical coral reefs to polar 

waters, from freshwater to the ocean deepest floors, up to the intertidal and into transition 

habitats), dominating many of them in terms of abundance and biomass 4.  

Sponges are soft bodied composed by organic and inorganic compounds that filter the 

water for food, and harbor yet undescribed associated microorganisms. It is no wonder that they 

have developed an incredibly diverse chemical arsenal to deter predators, compete for space, 

reject fouling organisms, and fight pathogens5. The biodiversity that characterizes the marine 

environment represents an enormous potential for the study of novel microstructures.  

The use of biostructures derived from the marine environment for  application as 

biomaterials is very recent 6. For instance, several authors have proposed, in the last years, the 

use of different marine species like coral skeletons, sea urchins and sponges as three dimensional 

biomatrices7-11. The results have confirmed that the three dimensional topography and the 

surface parameters of these materials influence positively cell differentiation. Furthermore, 

topography and composition of the material have been proven to affect cellular functions, such 

as adhesion, growth, motility, secretion and apoptosis12, 13. The particular interest in Porifera 

sponges is related to the fact that these are the only animal organisms able to polymerize silica to 

generate massive skeletal elements (spicules) 14, in Demospongiae class.  The spicules can 

constitute up to 75% of the dry weight of the organism and the mineral skeleton of these sponges 

is composed of amorphous silica (SiO2)2-5.H2O and may contain traces of other elements such as 
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S, Al, K and Ca 15. Sponges have also been noted to produce many unique biosilica structures 

that provide a magnificent source of inspiration for novel products in various fields following a 

biomimetic approach. The present state-of-the-art in the field of sponge biosilica has been 

summarized in different review articles 16 and books 17, 18.  

In particular, in this work we focus on the potential for novel biomedical applications of 

biosilica from Petrosia ficidormis, hereby taking advantage of the unique 3D bioceramics 

structure that can act as scaffold for tissue engineering applications. 
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2. EXPERIMENTAL SECTION 

2.1 Materials.  

  Sponge samples 

Petrosia ficidormis (PET) sponges were collected in Mediterranean Sea in the Spanish east coast, 

and were kindly provided by Ronald Osinga (Porifarma). The samples were frozen after 

collection. Prior to any experiment the sponges were salt leached and freeze dried. 

 

Chemicals 

All chemical reagents were ACS reagent grade and were used as received. 

 

2.2 Modification of Sponges 

 The bioceramic structure from the sponge was obtained after calcination at 750ºC for 6 

hours in a furnace. The biosilica structure obtained was modified to induce bioactivity by 

subjecting the bioceramics structure to two different surface treatments. An alkaline treatment 

with potassium hydroxide (KOH) 2M at reflux temperature and acidic treatment with 

hydrochloric acid (HCl) 2M at room temperature for 1h and 3h under stirring were performed. 

After the surface modification reaction, the sample was washed with distilled water for several 

times and dried overnight in a vacuum oven at 37ºC. The procedures tested were performed 

under conditions such that the original structural properties would be preserved but at the same 

time promoting the creation of hydroxyl groups on the surface of the 3D architecture. 

 

2.3 Bioactivity tests 

The alkaline and acid surface treated 3D bioceramics from PET (three replicas per time point) 

were immersed in simulated body fluid (SBF) at a ratio of 1:10 (bioceramics mass, in g: SBF 

volume, in mL) for 7 and 14 days and were maintained in a thermostat water bath at 37ºC and 60 
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rpm. At each time point the bioceramic structures were recovered, washed with distillated water 

and dried at 37ºC. 

 

2.4 Characterization  

 The bioceramic structures (modified and unmodified) were studied by different physico-

chemical characterization techniques, after calcination and after the bioactivity tests.  

 

2.4.1 Scanning Electron Microscopy 

Scanning electron microscopy (SEM) was used to analyze the surface morphology and to 

evaluate the formation of CaP crystals. All the samples were sputter-coated with gold before 

analysis. Micrographs were acquired on a Leica Cambridge S360 microscope (Leica Cambridge, 

United Kingdom) using beam energy of 15.0kV and a working distance (WD) of 19 mm. 

 

2.4.2 Energy Dispersive X-ray Spectroscopy.  

Energy dispersive X-ray spectroscopy (EDS) was used to characterize the nature and 

relative quantity of the chemical elements present on the surface of the bioceramics. The analysis 

was performed using a Link eXL-II spectroscope (Oxford Instruments, United Kingdom), at an 

energy of 15.0 keV, coupled to SEM. All the samples were carbon coated before the analysis. 

 

2.4.3 Micro-computed tomography 

 Micro-computed tomography (µ-CT) was used to evaluate the porosity and pore size of 

the 3D bioceramic structures. The images were acquired on a high-resolution micro-CT SkyScan 

1072 scanner (Skyscan, Belgium) using a voltage of 189 kV and a current of 46 µA. After image 

acquisition the noise was reduced with nRecon software. CT Analyser® software (SkyScan, 

Belgium) was used to obtain representative data sets of the samples and converting them into 2D 

images. 
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 7

 

2.4.4 Compressive mechanical analysis 

Compressive mechanical analysis of the 3D bioceramic structures were measured using 

an INSTRON 5540 (Instron Int. Ltd., High Wycombe, UK) universal testing machine with a load 

cell of 1 kN. The compression tests were carried out at a crosshead of 2 mm min-1, until the 

structure fracture. The compressive modulus was calculated from the initial linear slope on the 

stress/strain curves. 

 

2.4.5 Fourier transform infrared spectroscopy 

 The infrared spectra of the bioceramic samples, before and after immersion in SBF, were 

obtained on an IR Prestige-21 spectrometer (Shimadzu, Japan), using 32 scans, a resolution of 4 

cm-1 and a wavenumber range between 4400-400 cm-1.The samples were powdered, mixed with 

potassium bromide, and the mixture was molded into a transparent pellet using a press (Pike, 

USA).  

 

2.4.6 X-ray Powder Diffraction 

 X-ray diffraction (XRD) was used to identify the crystallographic planes of the CaP 

crystals deposited on the surface of bioceramics, after immersion in SBF solution. Diffraction 

patterns were collected on a Bruker D8 Discover, operating with Cu-Kα radiation, in the θ/2θ 

mode, between 6º and 70º, with a step increment of 0.04º and an acquisition time of 1 s per step. 

 
3 Cytotoxicity and cell adhesion studies 

 

3.1 Cell culture 

A human osteogenic sarcoma cell line (SaOS-2 cell line, European Collection of Cell 

Cultures, UK), was maintained in basal culture medium DMEM (Dulbecco’s modified Eagle’s 

medium; Sigma– Aldrich, Germany), plus 10% FBS (heat-inactivated fetal bovine serum, 
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Biochrom AG, Germany) and 1% A/B (antibiotic–antimycotic solution, Gibco, UK). Cells were 

cultured in a humidified incubator at 37ºC in a 5% CO2 atmosphere. 

3.2 Direct contact studies 

Confluent SaOS-2 cells were harvested and seeded in the samples as follows. Samples 

were distributed in a 48-well cell culture plate (BD Biosciences, USA). Samples were initially 

immersed in sterile PBS. After, PBS was removed and a drop (20µl) of a cell suspension with a 

concentration of 5 x 105 cells/ml was added to each material. The cells-samples constructs were 

statically cultured for 1, 3, 7 and 14 days under the culture conditions previously described.  

3.2.1 MTS Assay 

 Cell adhesion to the surface of the materials was determined after the pre-determined 

culture times by the MTS assay. The cell-scaffold were transferred to a new culture plate in order 

to evaluate the presence of viable cells only on the different materials. Cell metabolic activity at 

each culture time was determined using the Cell Titer 96Aqueous One Solution Cell 

Proliferation Assay (Promega, USA) according to the instructions of the manufacturer. 

Absorbance was measured at 490 nm using a microplate reader (Synergie HT, Bio-Tek, USA). 

Optical density was determined for each time point and compared to polystyrene tissue culture 

plate, used as a positive control. All cytotoxicity screening tests were performed using three 

replicates. 

 

3.2.2 DNA Quantification 

 

 After each time point, cells were lysed by osmotic and thermal shock and the obtained 

supernatant was used for DNA quantification. Cell proliferation was evaluated by quantifying 

the DNA content along the time of culture using the PicoGreen dsDNA kit (Molecular Probes, 

USA) according to the instructions of the manufacturer. Fluorescence was read (485 nm/528 nm 

of excitation/emission) in a microplate reader (Synergie HT, BioTek, USA), and the DNA 

amount calculated from a standard curve. 

 

3.2.3 Alkaline phosphatase (ALP) activity Assay 
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The analysis of ALP activity was performed after cell lysis, based on the conversion of p-

nitrophenyl phosphate (Sigma,Germany) into p-nitrophenol. In each assay 20 µL of lysate were 

incubated with 80 µL of p-nitrophenyl phosphate solution (0.2% w/w, in diethanolamine, Sigma, 

USA) in a transparent 96 well microplate, at 37ºC, for 45 minutes. The reaction was stopped 

using 80 µL of a 2M NaOH (Sigma, USA) and 0.4 mM EDTA (Sigma, USA) solution. Optical 

density was read at 405 nm using a microplate reader (Synergie HT, Bio-Tek, USA). A 

calibration curve was previously prepared using p-nitrophenol standard solutions (Sigma, USA) 

and used to extrapolate the ALP activity values. These values were then normalized against 

dsDNA results obtained within the same experiments. 

 

4 Statistical analysis  

Statistical analysis of the data was performed using GraphPad Prism version 5. Normality 

was verified by the Shapiro-Wilk test. Normal distributed data were then analysed using one-way 

ANOVA with Bonferroni’s post-test; when normality was not observed the non-parametric 

Kruskall-Wallis test was performed. Differences between the groups with p<0.05 were 

considered to be statistically significant. 

 

5.  RESULTS  

Images of the raw material of Petrosia ficidormis (PET) and the 3D bioceramic structure are 

presented in Figure 1.  Optical micrographes, SEM images and the 3D reconstruction of the 

sponges by Micro-CT analysis are also shown.  

 

5.1 Structural Analysis 

The EDS analysis showed that the 3D bioceramic structure is composed of silicon and 

oxygen atoms in a SiO2 stoichiometric proportion. Additionally, we can observe that after the 

calcination process, all the organic components are removed, as denoted by the absence of 

carbon, along with other constitution elements (Na, P, S, Cl, K and Mg) of the organic 
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materials leaving only the inorganic structure; the data supported the absence of carbon 

element in the EDS results (Figure 1).  

 

[FIGURE 1] 

 

Micro-CT analysis, before and after calcination, showed an increase of the porosity in 3D 

bioceramic structures. The raw material presented a porosity of 73%, and after calcination this 

value increased to 83%. The same trend was found for the mean pore size which increased from 

364 µm to 510 µm.  

The mechanical performance of the 3D bioceramic structure under compression loading 

was acessed in dry and in wet state and the results are presented in Table 1.  

 

Table 1. Compressive modulus of raw material and 3D bioceramic structure in dry and wet 

state. 

 

Sample 
Compressive Modulus 

(MPa) 

Raw Material 
Dry 3.21 (±1.74) 

Wet 1.03 (±0.16) 

3D Bioceramics 
Dry 3.34 (±1.14) 

Wet 1.12 (±0.57) 

 

5.2 Surface modification 

Surface modifications have been proposed to enhance or induce bioactivity properties in 

biomaterials19.  The two treatments were chosen based on different results published in the 

literature. It has been previously reported that the alkaline treatment of silicon surfaces at pH 

higher than 13 can result in the formation of hydroxyl groups 20. Likewise, under acidic media, 
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 11

glass surfaces can be modified to produce a superficial layer of Si-OH groups21. A schematic 

representation of the surface modification process is presented in Figure 2.  

 

[FIGURE 2] 

 

After the surface modification procedures, samples were observed by SEM (Figure 3). It 

was observed that the 3D structure was maintained after the treatments with an apparent increase 

of the surface roughness, compared to the control structures.  

 

[FIGURE 3] 

 

5.3 In vitro evaluation of bioactivity of the 3D bioceramics after chemical treatment  

 

 The in vitro bioactivity assessment was carried out by immersing the 3D bioceramics in 

simulated body fluid, which contains  ions and minerals at a concentration similar to the human 

plasma 22. When evaluating the results of the bioactivity for 1 and 3 hours of treatment, both for 

alkaline and acidic treatments, no differences were observed. Therefore, only the results for 1 

hour reaction will be presented here.  

 The pH of SBF solution was observed to be constant within the time period studied: 7.85 ±0.7 

in the case of KOH treated samples a 6.98 ± 1.2 in the case of HCl treated samples. The SEM 

micrographs of the surface of the 3D biomatrices after immersion in SBF for different time 

points are presented in Figure 4.  

 

[FIGURE 4] 

 

 Chemical analysis performed by EDS provided information for the determination of the Ca/P 

ratio of the crystals present. The determined Ca/P ratios are presented in Table 2. 
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Table 2. Ca/P atomic ratio calculated from the EDS data, for the modified and unmodified 3D 

bioceramics structures, after immersion in SBF for different times. 

  CTR KOH HCl 

7 Days 0 1.50 1.69 
14 Days 0 1.62 1.67 

 

The stoichiometry of HA refers to the exact atomic ratio of Ca/P (10/6 or 1.67) in this 

ceramic. Deviation from the exact Ca/P ratio destabilizes the crystal and enhances the dissolution 

of the material. Thus, calcium deficient HA with a Ca/P ratio of 1.60 is slightly more bioactive 

than stoichiometric HA with a Ca/P ratio of 1.67 23, 24.  

FTIR and XRD analysis were performed to better describe the new crystals on the surface 

of the 3D bioceramic structures. FTIR spectroscopy allowed the identification of most of Ca/P 

vibrational modes present in apatites. The analysis confirms the presence of characteristics peaks 

of carbonates (n3 1400 - 1550 cm−1; n4 650 - 750 cm−1) and phosphates (n3 1000 -1150 cm−1; n4 

500 - 620 cm−1), from hydroxyapatite. XRD patterns (Figure 5) of the 3D bioceramic surfaces 

treated from PET, confirmed the presence of the crystallographic diffraction planes of: 

hydroxyapatite - (2 1 0 hkl, 31.820 2Θ (λCU = 1.5406 Ǻ), (2 1 1 hkl, 328.967 2Θ (λCU = 1.5406 

Ǻ); calcium oxide - 2 0 0 hkl, 37.361 2Θ (λCU = 1.5406 Ǻ); and some intermediate crystals 

(DCPD-Brushite (1 2 1 hkl, 20.935 2Θ (λCU = 1.5406 Ǻ)).  

 

[FIGURE 5] 

 

5.4 In vitro biological studies 

SaOS-2 cell line was chosen to perform the in vitro biological assessment as it is an 

osteoblastic-like cell line. The choice of this cell line regards the final application envisaged 

which would be bone regeneration. The cytotoxicity effects and the cell viability for a certain 

culture time, on the 3D bioceramic structures, treated with KOH and HCl were evaluated by 

MTS assay (Figure 6).  

In what concerns the metabolic activity of SaOS-2 cells, when cultured with the 

materials, lower values than for the control were obtained in case of PET and KOH. For HCl 

treated samples the values, in general, were found to be higher than the control. These results 
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demonstrated that HCl treated samples present a better performance for cells, nevertheless, none 

of the samples present cytotoxic effect.  

 

[FIGURE 6] 

 

 The cell proliferation was evaluated by quantifying the DNA content along the time of 

culture. In Figure 7 the double stranded DNA (dsDNA) content of SaOS-2 Cells cultured for 1, 

3, 7 and 14 days on 3D bioceramic structures with KOH and HCl treatments (1hour reaction) is 

presented.  

 

[FIGURE 7] 

 

Alkaline phosphatase is an important enzyme in hard tissue formation, highly expressed 

by mineralized tissue cells. The analysis of ALP activity was performed and the results are 

presented in Figure 9. Alkaline phosphatase activity in the cells adhered on the surface of the 

KOH treated samples was lower than in the cells adhered to the material without chemical 

treatment (PET). However, a different result was obtained for the HCl treated samples that 

present higher values of alkaline phosphatase expression after 7 and 14 days.  

The presence and adhesion of cells in 3D bioceramics ceramics with and without 

treatments after 7 and 14 days in culture were observed by SEM analysis. Figure 9 shows the 

presence and adhesion of the osteoblastic cell line after 7 and 14 days in our 3D bioceramics 

structure regardless of sample. Moreover, the images suggest that HCl treated samples present 

higher adhesion, both for 7 days and for 14 days.  

 

[FIGURE 8] 

 

[FIGURE 9] 
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6. DISCUSSION 

In this work we hypothesized that three-dimensional (3D) bioactive bioceramics structures 

can be obtained from marine-sponges. The use of 3D structures from marine origin for 

biomedical applications has been proposed in the last years by different authors 8. Examples are 

the use of different marine species like coral skeletons, sea urchins and sponges as three 

dimensional biomatrices 25. Taking into account the variety in siliceous-nature of the chemical 

compositions, we also hypothesize that sponges may constitute an adequate source of 3D 

bioceramic scaffolds to be used in tissue engineering and regenerative medicine (TERM). In a 

previous work, the structure of PET, after calcination, demonstrated to be an interesting structure 

to act as scaffold in tissue engineering, particularly for bone tissue regeneration, but the 

bioactivity test revealed an inert surface 7. 

The inorganic structure from the marine sponge PET was obtained after calcination. The 

structure presents a stable 3D architecture which, in a biomimetic perspective, can inspire the 

development of scaffolds for bone TERM applications. 

Morphological characteristics such as porosity, mean pore size and interconnectivity are 

determining factors that define the applicability of a matrix as a TE construct. Generally, a 

surface with high porosity favors cellular growth, as a greater area is available for osteoblast 

adhesion and migration26; this, in turn, facilitates the proliferation of the cells. Furthermore, the 

bonding between the bone and the substitute material is more likely to take place on a porous 

surface. In 3D structures such as bone scaffolds, the dimension of the pores and their 

interconnectivity play also an importante role 27. With well-interconnected pores, cells can easily 

reach all parts of the material, leading to a more complete osteointegration 28. The morphological 

properties suggest the suitability to act as scaffold in tissue engineering approaches. 

Cunninggam, E. et al 
8, in a similar study with a diferente marine sponge (Spongia agaricina) 

obtained identical results in terms of porosity, mean pore size and interconnectivity.  

The values of compressive modulus before and after calcination indicate that this 

procedure did not affect the mechanical behaviour of 3D structure. However, a pronounced 

decrease of the compressive modulus (from ~3MPa to ~1MPa) is observed in the wet state. 
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Overall, the mechanical performances achieved in dry and wet sates are in the range of the 

mechanical properties of human bone 29, particularly in low-bearing load bone areas.  

Using bioactive scaffolds as a bone substitute is the most obvious choice for TERM 

applications, as these can replicate the mineral composition and the behavior of human bone. 

Bioactive materials are preferred, where bioactivity is defined as the ability of the material to 

induce the formation of an interfacial bonding between the implant and living tissues, without 

the formation of a fibrous capsule separating the biomaterial and the tissue30, 31. Hydroxyapatite 

(HA), Ca10(PO4)6(OH)2, is a chemical compound widely employed as a biomaterial, more 

specifically as a bone substitute. It is highly biocompatible and osteoconductive; in fact, it 

promotes the formation of new bone by favoring the growth of osteoblast cells 32. Mineral 

scaffold biocompatibility and its effectiveness as a bone substitute material depend, however, on 

several factors; the ratio between calcium and phosphorous is particularly important. 

Marine-sponges have not been yet fully explored for their ceramics or as a bioactive 3D 

bioceramic structure as opposed to other marine sources8, 10, 33-35. Although the morphological 

and mechanical features of the PET structure are very interesting, preliminary results on the 

bioactivity of the sponge itself did not demonstrate any inherent bioactivity for a period up to 28 

days. The lack of bioactivity found in PET could be justified by the fact that the sponge 

inorganic skeleton, which is the part that would render bioactivity is not be accessible and, 

therefore, no nucleation of crystals occurs. In the case of the bioceramics for bone regeneration, 

various in vitro and in vivo studies show that a series of interfacial reactions occur that leads to 

the formation of an apatite layer on the glass surface responsible for bone bonding 26, 32. The 

formation of an apatite layer is governed by a complex set of steps that start on the 

immobilization of calcium and phosphate ions in the surface of the biomaterial forming a 

biologically active hydroxycarbonate apatite. This layer evolves to form different calcium 

phosphate phases until it generates hydroxyapatite or hydroxyapatite-like coatings with their 

characteristic cauliflower morphology22, 36. When the same studies were performed to the 

calcinated material, the results have also shown lack of bioactivity. It is known, however that 

hydroxyl surface groups (-Si-OH) can be converted in Si-O-Si during processing at high 

temperatures in anhydrous environments 37. Therefore, the original presence of such chemical 

groups could have been destroyed during the calcination stage. These findings led to the 

conclusion that the bioceramics from PET do not possess intrinsic bioactivity, requiring a 
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chemical modification to induce it. Upon this modification, the hydroxyl groups now present on 

the surface may act as nucleation points for the formation of hydroxyapatite, meaning the surface 

bioactive. This hypothesis is in fact, in agreement with the experimental results obtained after the 

in vitro bioactivity tests performed. The presence of new crystalline structures can be observed 

for samples after immersion in SBF for 7 and 14 days, both for the acid and alkaline modified 

structures. Conversely, on the unmodified samples the development of such structures is not 

observed. According to the results presented, the HA obtained on the alkaline treated surfaces 

presents a Ca/P ratio below the stoichiometric 1.67, but an increase of the ratio with time of 

immersion was observed. In case of samples treated with HCl the Ca/P ratio of 1.67 was 

obtained for immersion after 14 days. In terms of morphology, the crystals present the typical 

cauliflower-like shape characteristic of hydroxyapatite except for the KOH 7 days samples. As 

can be observed from Figure 4, the morphology is clearly different from the others and the EDS 

analysis revealed the presence of Mg in higher amounts in the crystal composition. These non-

stable crystals, where other cations are present in the apatite lattice, can affect the stoichiometry 

of the developed apatite which will reflect in the Ca/P ratio. The Mg2+ will compete with Ca2+ 

for the same positions and, therefore, if the amount of phosphorus is maintained, a decrease in 

the ratio Ca/P is expected, this occurrence is in agreement with our results, as presented in Table 

2. These substitutions in the apatite structure modify the crystal lattice parameters and change the 

solubility and bioactivity properties of the material23, 24. Similar results were obtained for the 

samples modified with the 3 hours modification procedures. Nonetheless, after 14 days of 

immersion these metastable crystals originate stoichiometric HA. 

The results of FTIR and XRD analysis confirm the ability of the modified 3D bioceramic 

structure obtained from PET to act as nucleating points for the growth calcium-phosphate 

crystals and the success of surfaces treatments to induce bioactivity. The intermediate crystals, 

confirmed by XRD, formed during apatite precipitation process are unstable and will eventually 

lead to the formation of the stoichiometric hydroxyapatite layer on the surface of the ceramic. 

Comparing the results obtained for the two treatments, the same crystallographic planes were 

observed, demonstrating that both the alkali and acid surface modification treatments have 

induced the precipitation of the same apatite crystals, thus rendering the surface bioactive. 
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An important feature of the materials is their in vitro biological performance. The 3D 

bioceramic structure, in a biological environment, must be adequate for cell attachment, 

proliferation, tissue growth. 

The results demonstrate an increase of cell proliferation for the surface treated samples, 

after 3 days in culture. The highest values for cell proliferation were obtained after 7 and 14 days 

of culture for HCl treated samples, while for the KOH samples have a decrease of values. The 

results confirm that the samples treated with HCl, which have been the ones that demonstrated to 

be the most bioactive, are the ones that induce the activity of ALP enzyme and consequently 

leading to higher mineralization. The acidic treatment of the 3D bioceramics structures have 

showed to have a positive effect on the cell proliferation. This results are supported by the 

bioactivity assay observing a higher crystal nucleation in the samples treated by acidic 

conditions, wich suggest a good bioactive surface with the presence of hydroxyl groups. 

According to Feng and co-works
38

, more surface hydroxyl groups resulted in greater 

numbers of adhered osteoblasts and higher cell activity, which support the higher 

metabolic activity and alkaline phosphatase activity in HCl comparing with KOH 

treatment. The results obtained for MTS, DNA and ALP analysis, corroborate the fact 

suggested that HCl treatment improved the biological activity of the 3D marine-derived 

bioceramic structure. 

 

7. CONCLUSIONS 

In this study, a 3D bioceramic structure was obtained after calcination of the marine 

sponge Petrosia ficidormis. The calcination process renders a 3D bioceramic structure free of 

organic compounds but deprived of bioactivity. To induce bioactivity two chemical (alkaline and 

acidic) treatments were successful applied without modifying the overall structure, these 

modifications change the surface chemistry in such a way that it was able to promote 

precipitation of Ca/P crystals, namely hydroxyapatite, when immersed in SBF. Comparing the 

two chemical treatments, the HCl modification has proved to be more efficient for the nucleation 

of bioactive crystals. In vitro studies with an osteoblastic cell line have demonstrated the 

potential of the structure to support cell adhesion and growth. The set of results here presented 

have validated that the HCl modification is more effective than the one performed with KOH, 
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not only in terms of improvement of the bioactivity but also in what concerns cell proliferation, 

cell adhesion and mineralization. Finally, this study demonstrated the potential of 3D bioceramic 

obtained from marine sponge to be applied in tissue engineering strategies. 
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Figure 1. Morphological characterization of Petrosia ficidormis before and after calcination: (a,b) magnifying 
lens 1x (c,d) SEM micrographs (e, f) 3D micro-CT reconstruction images. EDS spectra chemical 

characterization of the structures (top right).  
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Figure 2 - Schematic representation of the surface modification of the sponge bioceramics surface 
modification and apatite formation.  
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Figure 3. SEM images after treatment in KOH and HCl during 1hour and 3 hours of reactions. 3D bioceramic 
without treatment was used as a control.  
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Figure 4. SEM images of bioactivity studies  after chemical treatments (reaction time 1 hour).  
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Figure 5. X-ray powder patterns of the 3D bioceramic structures of KOH and HCl treatments (1 hour 
reaction), before and after immersion in SBF solution (7 and 14 days).  
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Figure 6. Metabolic activity of SaOS-2 cultured for 1, 3, 7 and 14 days with 3D Bioceramics structures of 
KOH and HCl treatments (1hour reaction). Metabolic activity was extrapolated from the optical density 

resultant from the MTS reduction by the cells. Control (CTR) corresponds to cells cultured on tissue culture 

polystyrene.  
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Figure 7. Double stranded DNA (dsDNA) content of SaOS-2 cells cultured for 1,3,7 and 14 days on 3D 
Bioceramics structures of KOH and HCl treatments(1 hour reaction). The differences are significant (*, & and 

§ p < 0.05; *** p < 0.001).  
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Figure 8. Quantification of the amount of hydrolysed p-nitrophenol phosphate that correlates with alkaline 
phosphatase (ALP) activity in SaOS-2 Cells after 1,3, 7 and 14 days of culture on 3D Bioceramics structures 
of KOH and HCl treatments (1hour reaction). The differences are significant (#, & and § p < 0.05; *** p < 

0.001).  
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Figure 9. SEM images of SaOS-2 cells adhesion after 7 and 14 days of culture on 3D Bioceramics structures 
of KOH and HCl treatments (1 hour reaction).  
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TOC Graphic - Marine sponge bioceramics have been modified, through simple chemical procedures and 
rendered bioactive materials, as shown by the induced formation of hydroxyapatite. These surfaces are 

suitable to support for cell growth engaging their use in bone tissue applications  
329x136mm (299 x 299 DPI)  
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