5,457 research outputs found

    Localisation in focal epilepsy: a practical guide

    Get PDF
    The semiology of epileptic seizures reflects activation, or dysfunction, of areas of brain (often termed the symptomatogenic zone) as a seizure begins and evolves. Specific semiologies in focal epilepsies provide an insight into the location of the seizure onset zone, which is particularly important for presurgical epilepsy assessment. The correct diagnosis of paroxysmal events also depends on the clinician being familiar with the spectrum of semiologies. Here, we summarise the current literature on localisation in focal epilepsies using illustrative cases and discussing possible pitfalls in localisation

    Quantification of respiratory parameters in patients with temporal lobe epilepsy

    Get PDF
    Dysfunction affecting cardiac or pulmonary systems has been postulated as a major factor in sudden death in epilepsy (SUDEP). Whilst the majority of studies of cardiorespiratory function have focused on changes during seizures, here we investigate whether epilepsy influences basal respiratory parameters in patients with temporal lobe epilepsy (TLE) during the interictal period. Spirometry was performed in 10 females and 10 males. Measurements of Vital Capacity (VC), Forced Vital Capacity (FVC), Forced Expiratory Volume in the first second (FEV1) and ratios of FEV1 to FVC (FEV1/FVC) were obtained, and these values were analyzed as percentages of predicted values. None of the patients had chronic obstructive pulmonary disease and no significant alterations in respiratory function tests were found among these patients. No association between seizure frequency, antiepileptic drugs and SUDEP could be found in this study. Although the study did not identify any specific respiratory abnormality in TLE patients during the interictal period, re-evaluation of clinical data on pulmonary disorders in people with epilepsy should be better investigated

    Colchicine and amiprophos-methyl (APM) in polyploidy induction in banana plant

    Get PDF
    The objective was to assess the colchicine and amiprophos-methyl (APM) concentration and exposure period in the chromosome duplication of breed banana plants diploids. Banana stem tips were used from the following genotypes: breed diploids (1304-04 [Malaccensis x Madang (Musa acuminata spp. banksii)] and 8694-15 [0337-02 (Calcutta x Galeo) x SH32-63]). Colchicine was used at concentrations of 0 (control treatment), 1.25, 2.5 and 5.0 mM, while APM was used at 0 (control treatment), 40 and 80 μM, in solution under agitation (20 rpm), for 24 and 48 h periods. With the use of APM, 66.67% tetraploid plants were obtained in the 1304-04 genotype using 40 μM for 24 h and 18.18% in 80 μM for 48 h, while in the 8694-15 genotype using 40 and 80 μM colchicine for 48 h, 27.27 and 21.43% tetraploid plants were observed, respectively. For colchicine, in the 1304-04 genotype, only the 1.25 mM treatment for 48 h presented 25% tetraploid plants and in the 8694-15 genotype, the 5.0 mM concentration for 48 h produced 50% tetraploid plants. APM for 24 h enabled the tetraploid plant of the 1304-04 genotype to be obtained, while colchicine for 48 h resulted in tetraploid plants in the 8694-15 genotype.Key words: Musa acuminata, antimitotic, flow cytometry, tissue culture

    Mode I fracture characterization of human bone using the DCB test

    Get PDF
    Purpose – Fracture characterization of human cortical bone under pure mode I loading was performed in this work. The purpose of this paper is to validate the proposed test and procedure concerning fracture characterization of human cortical bone under pure mode I loading. Design/methodology/approach – A miniaturized version of the double cantilever beam (DCB) test was used for the experimental tests. A data reduction scheme based on crack equivalent concept and Timoshenko beam theory is proposed to overcome difficulties inherent to crack length monitoring during the test. The application of the method propitiates an easy determination of the Resistance-curves (R-curves) that allow to define the fracture energy under mode I loading from the plateau region. The average value of fracture energy was subsequently used in a numerical analysis with element method involving cohesive zone modelling. Findings – The excellent agreement obtained reveals that the proposed test and associated methodology is quite effective concerning fracture characterization of human cortical bone under pure mode I loading. Originality/value – A miniaturized version of traditional DCB test was proposed for cortical human bone fracture characterization under mode I loading owing to size restrictions imposed by human femur. In fact, DCB specimen propitiates a longer length for self-similar crack propagation without undertaking spurious effects. As a consequence, a R-curve was obtained allowing an adequate characterization of cortical bone fracture under mode I loading

    Heterodimetallic germanium(IV) complex structures with transition metals

    Get PDF
    The hydrothermal synthesis and structural characterization of a number of complex compounds containing the divalent tris(oxalato-O,O¢)germanate anion, [Ge(C2O4)3]2-, or the neutral bis(oxalate-O,O¢)germanium fragment, [Ge(C2O4)2], with transition-metal (M) cationic complexes of 1,10¢-phenanthroline (phen) is reported: [M(phen)3]- [Ge(C2O4)3]âxH2O [where M2+ ) Cu2+ (1a and 1b), Fe2+ (2a and 2b), Ni2+ (3), Co2+ (4); x ) 0.2 for 2b], [MGe- (phen)2(í2-OH)2(C2O4)2] [where M2+ ) Cd2+ (5) and Cu2+ (6)]. The isolation of two polymorphs with Cu2+ (1a and 1b) and other pseudo-polymorphs for Fe2+ (2a and 2b) was rationalized based on slightly different molar ratios for the starting materials. All compounds have been characterized using EDS, SEM, vibrational spectroscopy (FT-IR and FT-Raman), thermogravimetry, and CHN elemental composition and their structure determined on the basis of single-crystal X-ray diffraction studies. The crystal packing of the different chemical moieties for each series of compounds was discussed on the basis of the various intermolecular interactions present (strong C-Hâââð and weak C-HâââO hydrogen-bonding interactions, C-Hâââð and ð-ð contacts).FCT - SFRH/BPD/9309/2002FCT - SFRH/BPD/14410/2003FEDERPOCI - 201

    Entropic Upper Bound on Gravitational Binding Energy

    Get PDF
    We prove that the gravitational binding energy {\Omega} of a self gravitating system described by a mass density distribution {\rho}(x) admits an upper bound B[{\rho}(x)] given by a simple function of an appropriate, non-additive Tsallis' power-law entropic functional Sq evaluated on the density {\rho}. The density distributions that saturate the entropic bound have the form of isotropic q-Gaussian distributions. These maximizer distributions correspond to the Plummer density profile, well known in astrophysics. A heuristic scaling argument is advanced suggesting that the entropic bound B[{\rho}(x)] is unique, in the sense that it is unlikely that exhaustive entropic upper bounds not based on the alluded Sq entropic measure exit. The present findings provide a new link between the physics of self gravitating systems, on the one hand, and the statistical formalism associated with non-additive, power-law entropic measures, on the other hand

    Decaaqua­dioxidobis[μ3-N-(phospho­n­atometh­yl)imino­diacetato]­dizinc(II)­divanadium(IV) dihydrate

    Get PDF
    The title compound, [Zn2V2(C5H6NO7P)2O2(H2O)10]·2H2O, contains a [V2O2(pmida)2]4− dimeric anionic unit [where H4pmida is N-(phosphono­meth­yl)imino­diacetic acid] lying on a centre of symmetry which is exo-coordinated via the two deprotonated phospho­nate groups to two Zn2+ cations, with the coordination environment of Zn completed by five water mol­ecules. The crystal packing is mediated by an extensive network of strong and highly directional O—H⋯O hydrogen bonds involving the water mol­ecules (coordinated and uncoordinated) and the functional groups of pmida4−, leading to a three-dimensional supra­molecular network
    corecore