25 research outputs found

    Morphology and biometry of the thymus gland in macaw of Ara and Anodorhynchus genera

    Get PDF
    Foram utilizados 12 exemplares de Ara ararauna – seis fêmeas e seis machos –, cinco exemplares de Ara chloropterus (uma fêmea e quatro machos) e dois exemplares de Anodorhynchus hyacinthinus – uma fêmea e um macho –, todos adultos, doados por criadouro particular, após óbito natural. Os lobos foram dissecados e medidos com paquímetro – comprimento x largura x espessura – e analisados quanto ao peso, à topografia e à morfologia individual. Independentemente do gênero, foram identificados, em 17 casos (89,5%), lobos tímicos nos antímeros cervicais esquerdo e direito, e em oito casos (42,1%), lobos na cavidade celomática. Os lobos apresentaram formatos alongados – 52,6% –, arredondados – 21,1% – ou ovalados – 15,8% –, posicionados preferencialmente ventromedialmente ao longo do plexo vasculoneural do pescoço, com número médio de cinco lobos por antímero, tamanho médio de 0,49cm de comprimento, 0,12cm de largura e 0,05cm de espessura e peso médio de 0,076g.Twelve samples of Ara ararauna – six females and six males –, five samples of Ara chloropterus (one female and four males) and two samples of Anodorhynchus hyacinthinus (one female and one male), all adults from a Breeding Park, were used after natural death. The lobes were dissected and measured with electronic calliper (length x width x thickness) and analyzed taking their weight, topography and individual morphology into account. Regardless of gender, 89.5% of the cases presented timic lobes in the left and right cervical antimere, and 42.1% of the cases presented lobes in the celomatic cavity. The lobes were shown in shapes – long (52.6%), round (21.1%) or oval (15.8%), positioned mostly ventromedially, along the neurovascular plexus of the neck, with an average of five lobes per antimere, and an average size of 0.49cm length, 0.12cm width, and 0.05cm thick and average weight of 0.076g

    SUPRIMENTO ARTERIAL PARA A BOLSA CLOACAL DE GALINHAS (Gallus gallus Linnaeus, 1758) DA LINHAGEM LABEL ROUGE

    Get PDF
    Foram estudados a origem, o número e a ordenação dos ramos arteriais destinados à bolsa cloacal em 30 exemplares de Gallus gallus, da linhagem Label Rouge, machos e fêmeas, com idade entre oito e dez semanas. Após injetado o sistema arterial desses animais com solução corada de Neoprene látex, seguido de fixação em solução aquosa de formol a 10 % e ulteriormente dissecados, verificou-se que: a) uma artéria bursocloacal direita esteve presente em 24 dos casos (80,00%), ao passo que a artéria bursocloacal esquerda foi confirmada em 29 dos exemplares (96,66%); b) a bolsa cloacal foi irrigada por um ou dois ramos cloacais, oriundos da artéria bursocloacal ipsilateral; c) a artéria cloacal direita ocorreu em 20 casos (66,66%) e a artéria cloacal esquerda em 9 casos (30,00%), ocasiões em que cediam apenas um ramo; d) o número de ramos arteriais, independentemente de sua origen, variou de dois a quatro, sendo a sua disposição de maneira própria para cada exemplar examinado. Arterial supply for the cloacal bursa of the Rouge Lineage fowl Gallus gallus (Linnaeus, 1758) Abstract A study has been carried out on the origin, number and disposition of the cloacal bursa arterial branches from tirthy male and female fowls (Gallus gallus), of the Label Rouge lineage, ageing between eight and ten weeks. After being injected the arterial system of those animals with a colored solution of Neoprene latex, they were soon after fixed in an 10% aqueous solution of formalin and dissected. The following observations were carried out: a) a right burso cloacal artery was present in 24 of the cases (80.00%), while the left bursocloacal artery was confirmed in 29 of the cases (96.66%); b) the cloacal bursa was irrigated by one or two cloacal branches of the ipsilateral bursocloacal artery; c) the right cloacal artery is present in 20 cases (66.66%) and the left cloacal artery in 9 cases (30.00%), with only one branch; d) the number of arterial branches, independent of origin

    Physical Exercise, Inflammatory Process And Adaptive Condition: An Overview [exercício Físico, Processo Inflamatório E Adaptação:uma Visão Geral]

    No full text
    Physical exercise induces inflammation, a physiological response that is part of immune system activity and promotes tissue remodeling after exercise overload. The activation of the inflammatory process is local and systemic and is mediated by different cells and secreted compounds. The objective is to reestablish organ homeostasis after a single bout of exercise or after several exercise sessions. The acute-phase response involves the combined actions of activated leukocytes, cytokines, acute-phase proteins, hormones, and other signaling molecules that control the response to an exercise session and guide the adaptations resulting from training. This review provides an overview of the inflammatory process related to exercise and literature data regarding markers of inflammation in response to different experimental protocols. The results obtained indicate distinct inflammatory responses to acute and chronic exercise. In general, acute exercise induces a proinflammatory response characterized by transient leukocytosis (neutrophilia, monocytosis, and lymphocytosis), followed by a partial cellular immunosuppressive state. An increase in serum concentrations of creatine kinase, C-reactive protein and cell adhesion molecules is also observed, in addition to an increased secretion of cortisol and cytokines. In contrast, chronic exercise results in a local and systemic anti-inflammatory response that promotes tissue adaptation and protects the organism against the development of chronic inflammatory diseases and against the effects of non-functional overtraining, a condition in which a systemic and chronic proinflammatory and pro-oxidant state seems to prevail.134320328Zaldivar, F., Wang-Rodriguez, J., Nemet, D., Schwindt, C., Galassetti, P., Mills, P.J., Constitutive pro- and anti-inflammatory cytokine and growth factor response to exercise in leukocytes (2006) J Appl Physiol, 100, pp. 1124-1133Toigo, M., Boutellier, U., New fundamental resistance exercise determinants of molecular and cellular muscle adaptations (2006) Eur J Appl Physiol, 97, pp. 643-663Smith, L.L., Cytokine hypothesis of overtraining: A physiological adaptation to excessive stress? (2000) Med.Sci. Sports Exerc, 32, pp. 317-331Lazarim, F.L., Antunes-Neto, J.M., da Silva, F.O., Nunes, L.A., Bassini-Cameron, A., Cameron, L.C., The upper values of plasma creatine kinase of professional soccer players during the Brazilian National Championship (2009) J Sci Med Sport, 12, pp. 85-90Smith, L.L., Tissue trauma: The underlying cause of overtraining syndrome? (2004) J Strength Cond Res, 18, pp. 185-193Bassel-Duby, R., Olson, E.N., Signaling pathways in skeletal muscle remodeling (2006) Annu Rev Biochem, 75, pp. 19-37Gleeson, M., Immune function in sport and exercise (2007) J Appl Physiol, 103, pp. 693-699Tidball, J.G., Inflammatory processes in muscle injury and repair (2005) Am J Physiol Regul Integr Comp Physiol, 288, pp. R345-R353Tidball, J.G., Wehling-Henricks, M., Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo (2007) J. Physiol, 578, pp. 327-336Butterfield, T.A., Best, T.M., Merrick, M.A., The dual roles of neutrophils and macrophages in inflammation: A critical balance between tissue damage and repair (2006) J Athl Train, 41, pp. 457-465Pedersen, B.K., Rohde, T., Ostrowski, K., Recovery of the immune system after exercise (1998) Acta Physiol Scand, 162, pp. 325-332Rowbottom, D.G., Green, K.J., Acute exercise effects on the immune system (2000) Med Sci Sports Exerc, 32, pp. S396-S405Pedersen, B.K., Ullum, H., NK cell response to physical activity: Possible mechanisms of action (1994) Med Sci Sports Exerc, 26, pp. 140-146Gruys, E., Toussaint, M.J., Niewold, T.A., Koopmans, S.J., Acute phase reaction and acute phase proteins (2005) J Zhejiang Univ Sci B, 6, pp. 1045-1056Ceciliane, F., Giordano, A., Spagnolo, V., The systemic reaction during inflammation: The acute-phase proteins (2002) Protein Pept Lett, 9, pp. 211-223Moshage, H., Cytokines and the hepatic acute phase response (1997) J Pathol, 181, pp. 257-266Heinrich, P.C., Castell, J.V., Andus, T., Interleukin-6 and the acute phase response (1990) Biochem J, 265, pp. 621-636Baumann, H., Gauldie, J., The acute phase response (1994) Immunol Today, 15, pp. 74-80Margarson, M.P., Soni, N., Serum albumin: Touchstone or totem? (1998) Anaesthesia, 53, pp. 789-803Moldoveanu, A.I., Shephard, R.J., Shek, P.N., The cytokine response to physical activity and training (2001) Sports Med, 31, pp. 115-144Petersen, A.M.W., Pedersen, B.K., The anti-inflammatory effect of exercise (2005) J Appl Physiol, 98, pp. 1154-1162Williamson, D.L., Kimball, S.R., Jefferson, L.S., Acute treatment with TNF-alpha attenuates insulin-stimulated protein synthesis in cultures of C2C12 myotubes through a MEK1-sensitive mechanism (2005) Am J Physiol Endocrinol Metab, 289, pp. E95-E104Febbraio, M.A., Steensberg, A., Fischer, C.P., Keller, C., Hiscock, N., Pedersen, B.K., IL-6 activates HSP72 gene expression in human skeletal muscle (2002) Biochem. Biophs. Res Com, 296, pp. 1264-1266Serrano, A.L., Baeza-Raja, B., Perdiguero, E., Jardí, M., Muñoz-Cánoves, P., Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy (2008) Cell Metab, 7, pp. 33-44Gleeson, M., Immune system adaptation in elite athletes (2006) Curr Opin Clin Nutr Metab Care, 9, pp. 659-665Guyton, A.C., Hall, J.E., (2006) Tratado de Fisiologia Médica, , 11a Ed: CAMPUS EdAbcouwer, S.F., Bode, B.P., Souba, W.W., Glucocorticoids regulate rat glutamine synthetase expression in a tissue--specific manner (1995) J Surg Res, 59, pp. 59-65Costa, R.L.F.P.B., Vaisberg, M.W., Influências do exercício na resposta imune (2002) Rev Bras Med Esporte, 8, pp. 167-172Pedersen, B.K., Hoffman-Goetz, L., Exercise and the immune system: Regulation, integration, and adaptation (2000) Physiol Rev, 80, pp. 1055-1081Hubal, M.J., Chen, T.C., Thompson, P.D., Clarkson, P.M., Inflammatory gene changes associated with the repeated- bout effect (2008) Am J Physiol, 294, pp. R1628-R1637Nieman, D.C., Henson, D.A., Smith, L.L., Utter, A.C., Vinci, D.M., Davis, J.M., Cytokine changes after a marathon race (2001) J Appl Physiol, 91, pp. 109-114Viru, A., Viru, M., Karelson, K., Janson, T., Siim, K., Fischer, K., Adrenergic effects on adrenocortical cortisol response to incremental exercise to exhaustion (2007) Eur J Appl Physiol, 100, pp. 241-245Mooren, F.C., Blöming, D., Lechtermann, A., Lerch, M.M., Völker, K., Lymphocyte apoptosis after exhaustive and moderate exercise (2002) J Appl Physiol, 93, pp. 147-153Kasapis, C., Thompson, P.D., The effects of physical activity on serum C-reactive protein and inflammatory markers: A systematic review (2005) J Am Coll Cardiol, 45, pp. 1563-1569Ji, L.L., Antioxidants and oxidative stress in exercise (1999) Proc Soc Exp Biol Med, 222, pp. 283-292Lira, F.S., Rosa, J.C., Yamashita, A.S., Koyama, C.H., Batista, M.L., Seelaender, M., Endurance training induces depot--specific changes in IL-10/TNF-a ratio in rat adipose tissue (2009) Cytokine, 45, pp. 80-85Das, U.N., Anti-inflammatory nature of exercise (2004) Nutrition, 20, pp. 323-326Bruunsgaard, H., Physical activity and modulation of systemic low-level inflammation (2005) J Leukoc Biol, 78, pp. 819-835Meeusen, R., Duclos, M., Gleeson, M., Rietjens, G., Steinacker, J., Urhausen, A., Prevention, diagnosis and treatment of the overtraining syndrome (2006) Eur J Spo Sci, 6, pp. 1-14Hohl, R., Ferraresso, R.L.P., Buscariolli, R., Lucco, R., Brenzikofer, R., Macedo, D.V., Development and characterization of an overtraining animal model (2009) Med Sci Sports Exerc, 41, pp. 1155-116
    corecore