10 research outputs found

    Experimental and clinical studies on regenerative periodontal therapy

    No full text

    Availability and suitability of agroindustrial residues as feedstock for cellulose-based materials: Brazil case study

    No full text
    Bio-based polymers have emerged as a feasible alternative to petrochemical polymers mainly due to their biodegradability and renewable feedstock. Brazil is considered one of the largest producers of agricultural commodities. Hence, the country is also distinguished by the large generation of this residue type, which can be potentially used as a source to obtain biopolymers, such as cellulose. Based on the Brazil agriculture market, the study aims to analyze the suitability of agroindustrial residues as raw material for cellulose-based materials. A methodology for the selection of the most suitable residues is proposed, which takes into account the chemical composition of residues, namely the cellulose content and the cellulose-to-lignin ratio, as well as, their availability. In order to meet conservation issues, the availability of residues is calculated as a function of sustainable removal rates and competitive uses. Taking as reference the main crops identified, the average amount of agroindustrial residues available in Brazil was estimated at 108 million tons/year. Among the most suitable residues to be used as cellulose feedstock are soybean straw, sugarcane top/leaves, maize husk and stover and sugarcane bagasse.This work was supported by the Brazilian National Council for Scientific and Technological Development (Grant Number 201940/2015-9)

    Notes for genera – Ascomycota

    No full text
    Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)
    corecore