25 research outputs found

    Associations intra-familiales de démences dégénératives et de pathologies du développement

    No full text
    LILLE2-BU Santé-Recherche (593502101) / SudocSudocFranceF

    Characteristics and progression of patients with frontotemporal dementia in a regional memory clinic network

    No full text
    International audienceBackground: Due to heterogeneous clinical presentation, difficult differential diagnosis with Alzheimer’s disease (AD) and psychiatric disorders, and evolving clinical criteria, the epidemiology and natural history of frontotemporal lobar degeneration (FTD) remain elusive. In order to better characterize FTD patients, we relied on the database of a regional memory clinic network with standardized diagnostic procedures and chose AD patients as a comparator.Methods: Patients that were first referred to our network between January 2010 and December 2016 and whose last clinical diagnosis was degenerative or vascular dementia were included. Comparisons were conducted between FTD and AD as well as between the different FTD syndromes, divided into language variants (lvFTD), behavioral variant (bvFTD), and FTD with primarily motor symptoms (mFTD). Cognitive progression was estimated with the yearly decline in Mini Mental State Examination (MMSE).Results: Among the patients that were referred to our network in the 6-year time span, 690 were ultimately diagnosed with FTD and 18,831 with AD. Patients with FTD syndromes represented 2.6% of all-cause dementias. The age-standardized incidence was 2.90 per 100,000 person-year and incidence peaked between 75 and 79 years. Compared to AD, patients with FTD syndromes had a longer referral delay and delay to diagnosis. Patients with FTD syndromes had a higher MMSE score than AD at first referral while their progression was similar. mFTD patients had the shortest survival while survival in bvFTD, lvFTD, and AD did not significantly differ. FTD patients, especially those with the behavioral variant, received more antidepressants, anxiolytics, and antipsychotics than AD patients.Conclusions: FTD syndromes differ with AD in characteristics at baseline, progression rate, and treatment. Despite a broad use of the new diagnostic criteria in an organized memory clinic network, FTD syndromes are longer to diagnose and account for a low proportion of dementia cases, suggesting persistent underdiagnosis. Congruent with recent publications, the late peak of incidence warns against considering FTD as being exclusively a young-onset dementia

    Eur Radiol.

    No full text
    Objectives: We aimed to define brain iron distribution patterns in subtypes of early-onset Alzheimer’s disease (EOAD) by the use of quantitative susceptibility mapping (QSM). Methods: EOAD patients prospectively underwent MRI on a 3-T scanner and concomitant clinical and neuropsychological evaluation, between 2016 and 2019. An age-matched control group was constituted of cognitively healthy participants at risk of developing AD. Volumetry of the hippocampus and cerebral cortex was performed on 3DT1 images. EOAD subtypes were defined according to the hippocampal to cortical volume ratio (HV:CTV). Limbic-predominant atrophy (LPMRI) is referred to HV:CTV ratios below the 25th percentile, hippocampal-sparing (HpSpMRI) above the 75th percentile, and typical-AD between the 25th and 75th percentile. Brain iron was estimated using QSM. QSM analyses were made voxel-wise and in 7 regions of interest within deep gray nuclei and limbic structures. Iron distribution in EOAD subtypes and controls was compared using an ANOVA. Results: Sixty-eight EOAD patients and 43 controls were evaluated. QSM values were significantly higher in deep gray nuclei (p < 0.001) and limbic structures (p = 0.04) of EOAD patients compared to controls. Among EOAD subtypes, HpSpMRI had the highest QSM values in deep gray nuclei (p < 0.001) whereas the highest QSM values in limbic structures were observed in LPMRI (p = 0.005). QSM in deep gray nuclei had an AUC = 0.92 in discriminating HpSpMRI and controls. Conclusions: In early-onset Alzheimer’s disease patients, we observed significant variations of iron distribution reflecting the pattern of brain atrophy. Iron overload in deep gray nuclei could help to identify patients with atypical presentation of Alzheimer’s disease. Key Points: • In early-onset AD patients, QSM indicated a significant brain iron overload in comparison with age-matched controls. • Iron load in limbic structures was higher in participants with limbic-predominant subtype. • Iron load in deep nuclei was more important in participants with hippocampal-sparing subtype. © 2022, The Author(s), under exclusive licence to European Society of Radiology

    Is the Urea Cycle Involved in Alzheimer's Disease?

    No full text
    Since previous observations indicated that the urea cycle may have a role in the Alzheimer's disease (AD) process, we set out to quantify the expression of each gene involved in the urea cycle in control and AD brains and establish whether these genes could be genetic determinants of AD. We first confirmed that all the urea cycle enzyme genes are expressed in the AD brain. The expression of arginase 2 was greater in the AD brain than in the control brain. The presence of the rare arginase 2 allele rs742869 was associated with an increase in the risk of AD in men and with an earlier age-at-onset for both genders. None of the other genes in the pathway appeared to be differentially expressed in the AD brain or act as genetic determinants of the disease. © 2010 - IOS Press and the authors. All rights reserved

    Is the urea cycle involved in Alzheimer's disease?

    No full text
    Since previous observations indicated that the urea cycle may have a role in the Alzheimer’s disease (AD) process, we set out to quantify the expression of each gene involved in the urea cycle in control and AD brains and establish whether these genes could be genetic determinants of AD. We first confirmed that all the urea cycle enzyme genes are expressed in the AD brain. The expression of arginase 2 was greater in the AD brain than in the control brain. The presence of the rare arginase 2 allele rs742869 was associated with an increase in the risk of AD in men and with an earlier age at onset for both genders. None of the other genes in the pathway appeared to be differentially expressed in the AD brain or act as genetic determinants of the disease

    APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases

    Get PDF
    International audienceBackgroundAmyloid protein precursor (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) mutations cause autosomal dominant forms of early-onset Alzheimer disease (AD-EOAD). Although these genes were identified in the 1990s, variant classification remains a challenge, highlighting the need to colligate mutations from large series.Methods and findingsWe report here a novel update (2012–2016) of the genetic screening of the large AD-EOAD series ascertained across 28 French hospitals from 1993 onwards, bringing the total number of families with identified mutations to n = 170. Families were included when at least two first-degree relatives suffered from early-onset Alzheimer disease (EOAD) with an age of onset (AOO) ≤65 y in two generations. Furthermore, we also screened 129 sporadic cases of Alzheimer disease with an AOO below age 51 (44% males, mean AOO = 45 ± 2 y). APP, PSEN1, or PSEN2 mutations were identified in 53 novel AD-EOAD families. Of the 129 sporadic cases screened, 17 carried a PSEN1 mutation and 1 carried an APP duplication (13%). Parental DNA was available for 10 sporadic mutation carriers, allowing us to show that the mutation had occurred de novo in each case. Thirteen mutations (12 in PSEN1 and 1 in PSEN2) identified either in familial or in sporadic cases were previously unreported. Of the 53 mutation carriers with available cerebrospinal fluid (CSF) biomarkers, 46 (87%) had all three CSF biomarkers—total tau protein (Tau), phospho-tau protein (P-Tau), and amyloid β (Aβ)42—in abnormal ranges. No mutation carrier had the three biomarkers in normal ranges. One limitation of this study is the absence of functional assessment of the possibly and probably pathogenic variants, which should help their classification.ConclusionsOur findings suggest that a nonnegligible fraction of PSEN1 mutations occurs de novo, which is of high importance for genetic counseling, as PSEN1 mutational screening is currently performed in familial cases only. Among the 90 distinct mutations found in the whole sample of families and isolated cases, definite pathogenicity is currently established for only 77%, emphasizing the need to pursue the effort to classify variants

    Seizures in dominantly inherited Alzheimer disease

    No full text
    International audienceObjective: To assess seizure frequency in a large French cohort of autosomal dominant early- onset Alzheimer disease (ADEOAD) and to determine possible correlations with causative mutations.Methods: A national multicentric study was performed in patients with ADEOAD harboring a path- ogenic mutation within PSEN1, PSEN2, APP, or a duplication of APP, and a minimal follow-up of 5 years. Clinical, EEG, and imaging data were systematically recorded.Results: We included 132 patients from 77 families: 94 PSEN1 mutation carriers (MCs), 16 APP duplication carriers, 15 APP MCs, and 7 PSEN2 MCs. Seizure frequency was 47.7% after a mean follow-up of 8.4 years (range 5–25). After 5-year follow-up and using a Cox model analysis, the percentages of patients with seizures were respectively 19.1% (10.8%–26.7%) for PSEN1, 28.6% (0%–55.3%) for PSEN2, 31.2% (4.3%–50.6%) for APP duplications, and no patient for APP mutation. APP duplication carriers showed a significantly increased seizure risk compared to both APP MCs (hazard ratio [HR] 5 5.55 [95% confidence interval 1.87–16.44]) and PSEN1 MCs (HR 5 4.46 [2.11–9.44]). Among all PSEN1 mutations, those within the domains of protein hydrophilic I, transmembrane II (TM-II), TM-III, TM-IV, and TM-VII were associated with a significant increase in seizure frequency compared to other domains (HR 5 4.53 [1.93–10.65], p 5 0.0005)

    The French series of autosomal dominant early onset Alzheimer's disease cases: mutation spectrum and cerebrospinal fluid biomarkers.

    No full text
    International audienceWe describe 56 novel autosomal dominant early-onset Alzheimer disease (ADEOAD) families with PSEN1, PSEN2, and AβPP mutations or duplications, raising the total of families with mutations on known genes to 111 (74 PSEN1, 8 PSEN2, 16 AβPP, and 13 AβPP duplications) in the French series. In 33 additional families (23% of the series), the genetic determinism remained uncharacterized after this screening. Cerebrospinal fluid (CSF) biomarker levels were obtained for patients of 58 families (42 with known mutations and 16 without genetic characterization). CSF biomarkers profile was consistent with an AD diagnosis in 90% of families carrying mutations on known genes. In families without mutation, CSF biomarkers were consistent with AD diagnosis in 14/16 cases. Overall, these results support further genetic heterogeneity in the determinism of ADEOAD and suggest that other major genes remain to be characterized
    corecore