64 research outputs found

    Dog-assisted interventions for adults diagnosed with schizophrenia and related disorders: a systematic review

    Get PDF
    Background: Many individuals diagnosed with schizophrenia and related disorders experience insufficient symptom relief from currently available treatment options. Researching additional venues should be prioritized. This systematic review, designed in accordance with PRISMA, examined the effect of targeted and structured dog-assisted interventions as a supplementary treatment. Methods: Randomized as well as non-randomized studies were included. Systematic searches were conducted in APA PsycInfo, AMED, CENTRAL, Cinahl, Embase, Medline, Web of Science, and in several sources covering “gray” (unpublished) literature. In addition, forward and backward citation searches were performed. A narrative synthesis was conducted. Quality of evidence and risk of bias were assessed in accordance with GRADE and RoB2/ROBINS-I criteria. Results: 12 publications from 11 different studies met eligibility criteria. Overall, studies showed diverging results. General psychopathology, positive and negative symptoms of psychosis, anxiety, stress, self-esteem, self-determination, lower body strength, social function, and quality of life were among the outcome measures with significant improvement. Most documentation for significant improvement was found for positive symptoms. One study indicated significant deterioration of non-personal social behavior. The risk of bias was high or serious for most of the outcome measures. Three outcome measures were associated with some concerns regarding risk of bias, and three with low risk of bias. Quality of evidence was graded low or very low for all outcome measures. Conclusions: The included studies indicate potential effects of dog-assisted interventions for adults diagnosed with schizophrenia and related disorders, mostly beneficial. Nevertheless, low number of participants, heterogeneity, and risk of bias complicate the interpretation of results. Carefully designed randomized controlled trials are needed to determine causality between interventions and treatment effects.publishedVersio

    Understanding the Effects of Antipsychotics on Appetite Control

    Get PDF
    Antipsychotic drugs (APDs) represent a cornerstone in the treatment of schizophrenia and other psychoses. The effectiveness of the first generation (typical) APDs are hampered by so-called extrapyramidal side effects, and they have gradually been replaced by second (atypical) and third-generation APDs, with less extrapyramidal side effects and, in some cases, improved efficacy. However, the use of many of the current APDs has been limited due to their propensity to stimulate appetite, weight gain, and increased risk for developing type 2 diabetes and cardiovascular disease in this patient group. The mechanisms behind the appetite-stimulating effects of the various APDs are not fully elucidated, partly because their diverse receptor binding profiles may affect different downstream pathways. It is critical to identify the molecular mechanisms underlying drug-induced hyperphagia, both because this may lead to the development of new APDs, with lower appetite-stimulating effects but also because such insight may provide new knowledge about appetite regulation in general. Hence, in this review, we discuss the receptor binding profile of various APDs in relation to the potential mechanisms by which they affect appetite.publishedVersio

    Therapeutic drug monitoring of monoclonal antibodies in chronic inflammatory diseases: A snapshot of laboratories and applications across Europe

    Get PDF
    The European Cooperation in Science and Technology (COST) action ENOTTA (The European Network on Optimising Treatment with Therapeutic Antibodies in chronic inflammatory diseases) was launched in 2022. To pave the way for harmonization of analytical methods for quantitation of serum levels of therapeutic antibodies in research and clinical settings, ENOTTA recently performed an online survey mapping laboratories in the field. The survey, which contained 30 questions surrounding therapeutic drug monitoring of relevant drugs and anti-drug antibodies, was distributed via the ENOTTA and European Federation of Clinical Chemistry and Laboratory networks. Among 63 respondents across Europe, 45 reported analytical activity, with a range of utilized methods. Future engagement of as many sites as possible will enable comparison of methodologies and facilitate progress in the field

    Short communication: Distribution of psychotropic drugs into lipoproteins

    Get PDF
    Under embargo until: 2020-12-01Aim: The aim of this pilot study was to investigate whether psychotropic drugs frequently analyzed in a routine therapeutic drug monitoring laboratory bind to low-density lipoproteins/very-low-density lipoproteins (LDL/VLDL) in human serum. Methods: Drug concentrations in 20 serum sample pools containing one psychotropic drug each, and in the LDL/VLDL fractions extracted from the same samples, were measured by triple quadrupole liquid chromatography tandem mass spectrometry. The membrane permeability of the drugs was measured using a Parallel Artificial Membrane Permeability Assay. Results: Of the 20 antidepressants, antipsychotics, and antiepileptics examined, 7 drugs were detected in both the pooled serum samples and in the LDL/VLDL fraction. Binding of drugs to LDL/VLDL significantly correlated with high octanol: water partition coefficient (logP), high degree of protein binding, and a low polar surface area. The drugs found in LDL/VLDL, with the exception of aripiprazole, were also characterized by high or intermediate membrane permeability. Conclusions: The present results indicate that psychotropic drugs with certain characteristics bind to LDL/VLDL in blood. This further implies that lipoproteins could play an important role in drug transport.acceptedVersio

    One-Year Treatment with Olanzapine Depot in Female Rats: Metabolic Effects

    Get PDF
    Background Antipsychotic drugs can negatively affect the metabolic status of patients, with olanzapine as one of the most potent drugs. While patients are often medicated for long time periods, experiments in rats typically run for 1 to 12 weeks, showing olanzapine-related weight gain and increased plasma lipid levels, with transcriptional upregulation of lipogenic genes in liver and adipose tissue. It remains unknown whether metabolic status will deteriorate with time. Methods To examine long-term metabolic effects, we administered intramuscular long-acting injections of olanzapine (100 mg/kg BW) or control substance to female rats for up to 13 months. Results Exposure to olanzapine long-acting injections led to rapid weight gain, which was sustained throughout the experiment. At 1, 6, and 13 months, plasma lipid levels were measured in separate cohorts of rats, displaying no increase. Hepatic transcription of lipid-related genes was transiently upregulated at 1 month. Glucose and insulin tolerance tests indicated insulin resistance in olanzapine-treated rats after 12 months. Conclusion Our data show that the continuous increase in body weight in response to long-term olanzapine exposure was accompanied by surprisingly few concomitant changes in plasma lipids and lipogenic gene expression, suggesting that adaptive mechanisms are involved to reduce long-term metabolic adverse effects of this antipsychotic agent in rats.publishedVersio

    Illicit substances detected through high-resolution MS analysis in urine samples are associated with greater symptom burden in patients with psychosis

    Get PDF
    Background The prevalence of new psychoactive substances (NPS) in acute psychotic patients has not been investigated systematically. We applied a highly sensitive and specific mass spectrometry method for detection of NPS as well as traditional drugs of abuse (including illicit or prescription substances) in order to assess their prevalence and associations with symptom severity. Identification of these substances is useful in both the diagnostic process and evaluation of treatment effects. Methods Demographic data, results from the Positive and Negative Syndrome Score (PANSS) and Calgary Depression Scale for Schizophrenia (CDSS) and urine samples from admission were collected from 53 patients recruited into a clinical study of psychosis during 2014-2017. Urine samples were analysed with liquid chromatography high resolution mass spectrometry (LC-QTOF-MS), through both highly specific detection of 191 substances using internal standards and untargeted screening by means of pre-defined libraries. PANSS and CDSS scores in patients with or without drugs of abuse were compared. Results Potential drugs of abuse, i.e. drugs that could be used in a controlled therapeutic or a non-prescribed manner, were detected in samples from 20 of the 53 patients. Seven samples contained illicit drugs, but no NPS were detected. In this small patient subgroup, PANSS total score and CDSS score were significantly higher than in patients with negative urine sample results. Conclusion Drug screening could play an important role in the differential diagnostic evaluation of patients admitted with psychotic symptoms. Although no NPS were detected in the study population, we found other substances that were associated with psychotic and depressive symptoms.publishedVersio

    No Escaping the Rat Race: Simulated Night Shift Work Alters the Time-of-Day Variation in BMAL1 Translational Activity in the Prefrontal Cortex

    Get PDF
    Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1) has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA “cap”. In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats (n = 40) were exposed to forced activity, either in their rest phase (simulated night shift work) or in their active phase (simulated day shift work) for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0). Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus) implicated in cognition and sleep loss, were analyzed with m7GTP (cap) pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1) was significantly reduced in the PFC, together with significant reduction in the synaptic plasticity associated protein activity-regulatedcytoskeleton-associated protein (Arc). Our results indicate considerable time-of-day and brain-region specific variation in cap-dependent translation initiation. We concludethat simulated night shift work in rats disrupts the pathways regulating the circadian component of the translation of mRNA in the PFC, and that this may partly explain impaired waking function during night shift work

    Depression trajectories and cytokines in schizophrenia spectrum disorders - A longitudinal observational study

    Get PDF
    Depression occurs frequently in all phases of schizophrenia spectrum disorders. Altered activity in the immune system is seen in both depression and schizophrenia. We aimed to uncover depressive trajectories in a sample of 144 adult individuals with schizophrenia spectrum disorders followed for one year, in order to identify possible cytokine profile differences. Patients were assessed longitudinally with the Positive and Negative Syndrome Scale (PANSS) and the Calgary Depression Scale for Schizophrenia (CDSS), where a score above 6 predicts depression. The serum cytokine concentrations for tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, interleukin (IL)-1beta, IL-2, IL-4, IL-6, IL-10, IL-12p70 and IL-17A were measured using immunoassays. Latent growth curve models, multilevel models and latent class growth analysis (LCGA) were applied. The LCGA model supported three latent classes (trajectories) with differing CDSS profiles during the one-year follow-up: a high CDSS group (40.8 % of participants), a moderate CDSS group (43.9 %) and a low CDSS group (15.3 %). Five single PANSS items predicted affiliation to depressive trajectory: hallucinations, difficulty in abstract thinking, anxiety, guilt feelings and tension. In the high CDSS group, despite diminishing psychotic symptoms, depressive symptoms persisted throughout one year. The pro-inflammatory cytokines IFN-γ, IL-1β and TNF-α were differentially distributed between the depressive trajectories, although levels remained remarkably stable throughout 12 months. Significant changes were found for the anti-inflammatory cytokine IL-10 at baseline with an accompanying difference in change over time. More research is required to optimize future treatment stratification and investigate the contribution of inflammation in depressed patients with schizophrenia spectrum disorders.publishedVersio

    Shift in Food Intake and Changes in Metabolic Regulation and Gene Expression during Simulated Night-Shift Work:A Rat Model

    Get PDF
    Night-shift work is linked to a shift in food intake toward the normal sleeping period, and to metabolic disturbance. We applied a rat model of night-shift work to assess the immediate effects of such a shift in food intake on metabolism. Male Wistar rats were subjected to 8 h of forced activity during their rest (ZT2-10) or active (ZT14-22) phase. Food intake, body weight, and body temperature were monitored across four work days and eight recovery days. Food intake gradually shifted toward rest-work hours, stabilizing on work day three. A subgroup of animals was euthanized after the third work session for analysis of metabolic gene expression in the liver by real-time polymerase chain reaction (PCR). Results show that work in the rest phase shifted food intake to rest-work hours. Moreover, liver genes related to energy storage and insulin metabolism were upregulated, and genes related to energy breakdown were downregulated compared to non-working time-matched controls. Both working groups lost weight during the protocol and regained weight during recovery, but animals that worked in the rest phase did not fully recover, even after eight days of recovery. In conclusion, three to four days of work in the rest phase is sufficient to induce disruption of several metabolic parameters, which requires more than eight days for full recovery.publishedVersio
    corecore