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Abstract: Night-shift work is linked to a shift in food intake toward the normal sleeping period,
and to metabolic disturbance. We applied a rat model of night-shift work to assess the immediate
effects of such a shift in food intake on metabolism. Male Wistar rats were subjected to 8 h of forced
activity during their rest (ZT2-10) or active (ZT14-22) phase. Food intake, body weight, and body
temperature were monitored across four work days and eight recovery days. Food intake gradually
shifted toward rest-work hours, stabilizing on work day three. A subgroup of animals was euthanized
after the third work session for analysis of metabolic gene expression in the liver by real-time
polymerase chain reaction (PCR). Results show that work in the rest phase shifted food intake to
rest-work hours. Moreover, liver genes related to energy storage and insulin metabolism were
upregulated, and genes related to energy breakdown were downregulated compared to non-working
time-matched controls. Both working groups lost weight during the protocol and regained weight
during recovery, but animals that worked in the rest phase did not fully recover, even after eight
days of recovery. In conclusion, three to four days of work in the rest phase is sufficient to induce
disruption of several metabolic parameters, which requires more than eight days for full recovery.

Keywords: shift work; night work; animal model; metabolism; circadian rhythmicity; gene expression;
body temperature; body weight; food intake

1. Introduction

Working shifts is common in modern societies [1], despite the fact that chronic night-shift work is
linked to an increased risk for a wide variety of diseases, including metabolic disorders such as obesity
and diabetes [2–8].

The regulation of daily rhythmicity in physiology and behaviour is closely intertwined with
the regulation of metabolism. The circadian clock in the suprachiasmatic nuclei (SCN) of the
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hypothalamus influence other hypothalamic regions and peripheral tissues involved in regulation of
feeding behaviour, metabolism, energy storage, and energy breakdown [9].

An important function of the endogenous circadian system is that it allows for anticipation
of meals, and thereby facilitates efficiency in metabolic regulation [10]. The activity of organs
involved in food processing and energy metabolism—including the digestive tract [11], liver [12,13],
and pancreas [14]—shows clear circadian rhythmicity. Food intake is thought to be one of the primary
zeitgebers (time-givers) for the coordination and timing of these rhythms [15].

Night-shift workers are exposed to conflicting zeitgebers, imposed by changes in food intake and
activity patterns, as well as nocturnal light exposure [16–18]. Consequently, during night-shift work,
endogenous circadian rhythms become desynchronized, as conflicting signals are sent to different
tissues and organs. Often, the desynchronization is prolonged, as entrainment of rhythms in different
tissues occurs at different rates [10].

The effects of working at night are immediate, and although humans may partially adapt to
the night-shift, many physiological systems fail to adjust [19]. In Norway and Europe generally,
night workers commonly work three to four night shifts in a row. Data from a simulated night-shift
study in humans indicate that the metabolic effects are most pronounced during the initial two days,
followed by compensatory mechanisms triggered by negative metabolic effects [20]. Ribeiro and
colleagues induced a 9 h phase delay in a human simulated shift work study. Controlling energy
and macronutrient intake, they showed that plasma levels of free fatty acids and triglycerides were
reduced postprandially, indicative of poor metabolic regulation, but that this reduction was partially
normalized on the third day following the phase delay [20].

Animal models of shift work may provide important clues to the mechanisms by which shift
work causes metabolic disruption. Although several animal models indicate marked metabolic
changes due to rest-work [21], only models involving relatively extreme rest-work schedules have been
applied so far. The early metabolic effects of simulated night-shift work have yet to be investigated in
animal models.

In the present study, we utilized a rat model of shift work to investigate the early effects of
simulated night work on metabolism. We hypothesized that a shift in feeding rhythm during
work hours occurs during a four-day rest-work schedule, as a sign of metabolic compensation.
Specifically, we proposed that compensatory mechanisms triggered by negative metabolic effects
would be displayed in liver gene expression due to a shift in the timing of food intake.

2. Materials and Methods

2.1. Ethical Approval

This project was approved by the Norwegian Animal Research Authority (permit number: 2012463)
and performed according to Norwegian laws and regulations, and The European Convention for the
Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes.

2.2. Animals and Housing

Adult male rats (n = 40, Wistar, NTac:WH, Taconic, Silkeborg, Denmark) weighing approximately
300 g at arrival, were group housed in individually ventilated cages (IVC, Tecniplast, Buggugitate,
Italy, 75 air changes/h) type IV (480 × 375 × 210 mm, 1500 cm2). After surgery and during the
experiment, animals were single housed (IVC cage type III, 425 × 266 × 185 mm, 800 cm2). The study
was performed under a 12 h light/12 h dark (LD) cycle (lights on at 06:00, zeitgeber time 0; ZT0).
Lights were gradually dimmed on and off over a period of 1 h, and were fully on at 07:00 and fully
off at 19:00. Food (rat and mouse No. 1, Special Diets Services, Witham, Essex, UK) and water were
provided ad libitum throughout the experiment.
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2.3. Study Design

To assess changes in food timing, rats were randomly assigned to one of two treatment groups,
either rest-work (RW, n = 24) or active-work (AW, n = 16). The experiment first consisted of four days of
undisturbed baseline, followed by a four-day work period. A subset of animals was monitored during
eight days of undisturbed recovery (RW n = 14, AW n = 11). See Figure 1 for a graphical overview
of the study design. A shift in feeding rhythm of RW animals was observed during work session
three. For assessment of changes in metabolic gene expression in the liver during this shift, another
experiment was conducted in a subset of animals (RW n = 10, AW n = 10) after five weeks of recovery
from the initial four-day shift-work period. Since the animals were still young adults [22], we consider
it unlikely that ageing affected the results of this second experiment. The animals were randomly
assigned to three consecutive days of either AW or RW as described above, euthanized after the third
work session, and compared to time-matched non-working controls (n = 5, each condition).
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Figure 1. Overview of the study design. Animals were monitored for four baseline days, and a four-day
work schedule during which animals were exposed to either rest-work or active work. The work
schedule was followed by eight days of recovery. After at least five weeks of recovery, a subset of
animals underwent a three-day work schedule (not shown) before euthanasia and tissue harvest from
experimental animals and undisturbed time-matched controls.

2.4. Simulated Shift Work Procedure

To mimic human shift work and compare this with normal daytime work, rats were exposed
to forced activity for 8 h per day, centred either during the rats’ normal active phase (AW; ZT 14-22)
or during the rats’ normal rest phase (RW; ZT 2-10), as described previously [23]. Forced activity
was achieved by placing the rats in automatically rotating wheels (Rat Running Wheel, TSE running
wheel system, Bad Homburg, Germany; 24 cm diameter; 3 rpm; 1440 revolutions or 1.086 km of
linear distance per 8 h session). Food and water was available ad libitum. Rotating wheels, feeders,
and water bottles were cleaned after each work session with a 5% ethanol solution. Between sessions,
animals were housed in their home cages.

2.5. Telemetric Recording and Analyses of Body Temperature

Rats were implanted with transmitters (Physiotel, Data Sciences International, St. Paul, MN, USA)
for continuous wireless recording of body temperature, as previously described [24]. In brief, animals
were anaesthetized with subcutaneous injection of a mixture of fentanyl 0.277 mg/kg, fluanizone
8.8 mg/kg, and midazolam 2.5 mg/kg (Hypnorm, Janssen, Beerse, Belgium; Dormicum, Roche, Basel,
Switzerland; Midazolam Actavis, Actavis, Parsippany-Troy Hills, NJ, USA), and the transmitters
were placed in subcutaneous pockets in the dorsomedial lumbar region (4ET transmitters) or in the
neck region (F40-EET transmitters). Animals were allowed to recover for 14 days before entering the
experiment. Body temperature was recorded every 10 s, at 50 Hz sampling rate, and signals were
collected with Dataquest ART software (version 4.1, Data Sciences International, St. Paul, MN, USA).
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Chronos-Fit software (Heidelberg University, Heidelberg, Germany) [25] was used for linear analyses
of body temperature. From the linear analysis, 24 h mean, 12 h rest phase mean (lights on; ZT 12–24),
and 12 h active phase mean (lights off; ZT 0–12) were calculated.

2.6. Body Weight and Food Intake Measurements

At baseline, all animals were weighed to assess 24 h and four-day body weight change.
Baseline food and water intake were monitored across an 8 h window equal to the length of
one work session, and across a 16 h window equal to the time between each work session. During
the four-day work period, body weight change, food intake, and water intake were monitored for
each 8 h work session and the 16 h between the work sessions. During the eight-day recovery phase,
body weight change was monitored every four days.

2.7. Assessment of Metabolic Gene Expression in the Liver

Following the third work session, animals were fasted for 2 h to avoid the immediate effects of
food intake on gene expression, anaesthetized with isoflurane, and sacrificed by decapitation. AW were
sacrificed at ZT0, before the transition from dark to light phase, and RW at ZT12, before the transition
from light to dark phase. A separate group of undisturbed animals never exposed to simulated work
were used as time-matched controls, and sacrificed at the same zeitgeber times as experimental animals
(AW control: ZT0; and RW control: ZT12). Liver tissue was harvested, flash frozen, and stored at
−80 ◦C until analysis. Samples were homogenized using a TissueLyser (Qiagen, Valencia, CA, USA).
RNA extraction was performed using a 6100 Nucleic acid PrepStation (Applied Biosystems, Foster City,
CA, USA). A total of 20 ng RNA was transcribed to cDNA using the High Capacity RNA-to-cDNA kit
(Applied Biosystems). Real-time polymerase chain reaction (PCR) was run on the Applied Biosystems
7900 Real-Time PCR System, with each sample run in triplicate. Relative gene expression levels were
determined using the comparative ∆Ct method, using β-actin (Actb) and ribosomal protein lateral
stalk subunit P0 (Rplp0) as endogenous controls. Sequence names, main function, accession numbers,
and primer sequences are shown in Table 1.

2.8. Statistical Analyses

Statistical analyses were conducted using STATA (release 14; StataCorp LP, College Station, TX,
USA). Baseline food intake and body weight were compared between groups using student’s t-test
(two-tailed). For all other statistical analyses of food intake, body weight, and body temperature,
we used mixed model analysis using restricted maximum likelihood estimation with the unstructured
covariance between random effects. Where significant effects were observed, pairwise comparisons
of groups at each time point were performed as well as comparing each day to baseline. Difference
in gene expression (fold change) between groups was evaluated using student’s t-test (two-tailed).
Statistical significance was accepted at p < 0.05.
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Table 1. Sequence names, accession numbers, and primer sequences for genes examined for hepatic transcriptional levels.

Gene Main Function Accession Number Forward Primer Reverse Primer

Fatty acid synthase (Fasn) Fatty acid synthesis NM_017332 CCATCATCCCCTTGATGAAGA GTTGATGTCGATGCCTGTGAG

Stearoyl-CoA 9-desaturase; Stearoyl-CoA
desaturase 1 (Scd1) Fatty acid desaturation NM_139192 TCAATCTCGGGAGAACATCC CATGCAGTCGATGAAGAACG

Diacylglycerol O-acyltransferase 1 (Dgat1) Triglyceride synthesis NM_053437 AATGCTGCGGAAAAACTACG TTGCTGGTAACAGTGCTTGC

Diacylglycerol O-acyltransferase 2 (Dgat2) Triglyceride synthesis NM_001012345 AATCTGTGGTGCCGCCAG TCCCTGCAGACACAGCTTTG

Glycerol-3-phosphate acyltransferase 1,
mitochondrial (Gpam) Triglyceride synthesis NM_017274 AATGCTGCGGAAAAACTACG TTGCTGGTAACAGTGCTTGC

Sterol regulatory element-binding
protein 1c (Srebf1)

Key regulator of fatty
acid/triglyceride synthesis NM_001271207 GAACCGCAAAGGCTTTGTAAA ACCCAGATCAGCTCCATGGC

Hydroxymethylglutaryl-CoA synthase,
cytoplasmic (Hmgcs1) Sterol synthesis NM_017268 CAGCTCTTGGGATGGACGA GGCGTTTCCTGAGGCATATATAG

Sterol regulatory element-binding
protein 2 (Srebf2) Key regulator of sterol synthesis NM_001033694.1 GCCGCAACCAGCTTTCAA CCTGCTGCACCTGTGGTGTA

Peroxisome proliferator-activated receptor
alpha (Ppara) Fatty acid oxidation NM_013196 AATGCAATCCGTTTTGGAAGA ACAGGTAAGGATTTCTGCCTTCAG

Peroxisome proliferator-activated receptor
gamma (Pparg) Adipocyte differentiation NM_001145366 CCACAAAAAGAGTAGAAATAAATGTCAGTAC CAAACCTGATGGCATTGTGAGA

Insulin receptor substrate 2 (Irs2) Mediation of insulin effects NM_001168633 GAAGCGGCTAAGTCTCATGG CTGGCTGACTTGAAGGAAGG

Phosphorylase, glycogen, liver (Pygl) Glycogen breakdown NM_022268 AAAAGCCTGGAACACAATGG TCGGTCACTGGAGAACTTCC

Mechanistic target of rapamycin (Mtor) Mediation of cellular metabolic
stress response NM_019906 CATGAGATGTGGCATGAAGG AAACATGCCTTTGACGTTCC

Carbohydrate responsive element binding
protein (ChREBP/Mlxipl)

Triglyceride synthesis in response
to carbohydrates AB074517 CTCTCAGGGAATACACGTCTCC ATCTTGGTCTTTGGGTCTTCAGG

β-actin (Actb) Endogenous control NM_031144 TACAGCTTCACCACCACAGC CTTCTCCAGGGAGGAAGAGG

Rattus norvegicus ribosomal protein lateral
stalk subunit P0 (Rplp0) Endogenous control NM_022402.2 CATTGAAATCCTGAGCGATGT AGATGTTCAACATGTTCAGCAG
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3. Results

3.1. Baseline Parameters

At baseline, the two groups on average had similar body weight and food intake (p > 0.09 in all
cases). The absolute baseline food intake across 24 h was 23.1 (±0.53 g) for RW and 21.36 (±0.70 g) for
AW. Eight hours baseline food intake was 4.39 (±0.37 g) for RW and 8.54 (±0.70 g) for AW. Moreover,
there were no significant differences in body temperature parameters (24 h mean, active phase mean,
rest phase mean; p > 0.10 in all cases). Baseline day three was used as baseline reference in the
subsequent analyses.

3.2. Feeding and Body Temperature Rhythms, during and after One Rest-Work Period

In RW, total 24 h food intake was significantly reduced on all four work days compared to baseline
(p < 0.001 for all days; Figure 2a), but not compared to AW. RW food intake gradually increased across
the first two 8 h work sessions. On day three, food intake stabilized, and was significantly increased
in the 8 h work sessions on both days three and four (p < 0.02; Figure 2b). Hence, RW shifted the
timing of food intake on work day three. This shift was also significant compared to AW food intake
during the work session on days three and four (p < 0.01, both work sessions; Figure 1b). Between
work sessions, food intake was decreased on all work days (p < 0.001, all days) compared to baseline.
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Figure 2. Food intake across one shift work period for active workers (AW) and rest-workers (RW):
(a) 24 h food intake; (b) 8 h food intake (during work session). Data are shown as percentage change
relative to baseline. Error bars indicate SEM. W1–4 indicates work days 1 to 4. W4 not included in 24 h
food intake due to missing measurements. * p < 0.05; ** p < 0.01; *** p < 0.001, compared to baseline.
## p < 0.01; ### p < 0.001, between groups.

RW body weight dropped and remained below baseline across the whole four-day rest-work
period (Figure 3). The reduced body weight was evident across 24 h, and during the 8 h work sessions.
RW gained less weight between the work sessions, both compared to baseline (p < 0.001, all work days)
and to AW (p < 0.008, all work days). The most pronounced body weight loss was observed during
work day two, before body weight loss appeared to attenuate (see Figure 3).
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In RW, mean 24 h body temperature during the four-day rest-work period did not significantly
differ from baseline or AW. However, RW body temperature was elevated during the 12 h rest phase
(which now included the 8 h work session; p < 0.001 for all four work days), and was reduced during
the 12 h active phase on work days two to four (p < 0.003 all three work days, Figure 4b). The 12 h
body temperature increase from baseline during rest phase was more pronounced in RW than in AW
on work days three and four (p < 0.02 both), and lower during the 12 h active phase on work day four
(p = 0.02).Nutrients 2016, 8, 712  8 of 13 
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(a) active workers (AW) and (b) rest-workers (RW). Data are shown as mean percentage change relative
to baseline. Error bars indicate SEM. W1–4 indicate work days 1 to 4. ** p < 0.01; *** p < 0.001, compared
to baseline.

In AW, total 24 h food intake was reduced on work days one and two compared to baseline
(p < 0.05, both days), but not on work days three to four (Figure 2a). During the 8 h work sessions, food
intake was only significantly reduced on work day three compared to baseline (p < 0.001, Figure 2b).
Food intake in the 16 h between work sessions was not significantly different from baseline.
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AW body weight was reduced across 24 h (p < 0.001, all workdays) and during the 8 h work
sessions (p < 0.001, all work sessions), but increased more during the 16 h between the work sessions
(p < 0.001, all workdays) compared to baseline condition (Figure 3).

Mean 24 h body temperature during the four-day work period in AW was slightly elevated
(0.17 ◦C on average), but not significantly different from baseline (Figure 4a). AW mean 12 h body
temperature during the active phase (including the 8 h work session) was unaltered compared to
baseline. Mean 12 h body temperature during the rest phase between work sessions was increased by
0.31 ◦C on average compared to baseline (p < 0.001, all days).

3.3. The Recovery Period

Rest-workers increased but did not regain the lost body weight during the 8 days recovery phase
(p < 0.001; Figure 5). Mean body temperature for 24 h and for 12 h active phase was not significantly
different from baseline, while mean body temperature during the 12 h rest phase progressively declined
in the course of the recovery period, until it was significantly lower than baseline on recovery days
five to eight (p < 0.02; Figure 4b).
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Active-workers gradually increased their body weight, and returned to baseline level in the
course of the eight-day recovery period (Figure 5). On recovery day four, body weight was still
significantly lower than baseline (p < 0.001), but not on recovery day eight (p = 0.20). Mean values of
body temperature in the recovery period did not differ from baseline.

3.4. Metabolic Gene Expression in the Liver at the Shift in Feeding Rhythm of Rest-Workers

In our protocol, AW and RW animals were euthanized on opposite zeitgeber time points,
which allowed for comparison to time-matched controls only. Transcriptional alterations in several
key genes involved in glucose metabolism, insulin sensitivity, fatty acid synthesis, triglyceride
synthesis, cholesterol synthesis, and fatty acid oxidation were present in RW compared to
undisturbed, time-matched control animals (Figure 6). mRNA levels for the genes encoding
Insulin receptor substrate 2 (Irs2), Hydroxymethylglutaryl-CoA synthase, cytoplasmic (Hmgcs1), and
Glycerol-3-phosphate acyltransferase 1, mitochondrial (Gpam) were all upregulated in RW compared
to time-matched controls. Less-pronounced upregulation of Hmgcs1 was present in AW, compared to
time-matched controls. Transcriptional levels of Fatty acid synthase (Fas) were upregulated four-fold
both in RW and in AW, while transcription of Stearoyl-CoA desaturase 1 (Scd1) was significantly
downregulated in the liver from both groups. Transcription of Peroxisome proliferator-activated
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receptor alpha (Ppara, a major regulator of fatty acid oxidation) was downregulated in RW, but not
in AW.
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Figure 6. Expression levels of key metabolic genes in the liver from rest-workers (RW) and active
workers (AW) following three work sessions, compared to undisturbed rats never exposed to
simulated shift work. AW (n = 10) were sacrificed at zeitgeber time (ZT)24, and RW (n = 10) at ZT12.
Undisturbed rats (RW control (n = 5) and AW control (n = 5) were sacrificed in a time-matched
manner (i.e., at the same zeitgeber times as experimental animals). Fold changes for each gene
represent the relative difference between shift work rats and controls. A fold change of 1 means
no difference compared to controls, while a fold change of 2 means a doubling of transcriptional
level, and a fold change of 0.5 a halving of the transcriptional level. * p < 0.05; ** p < 0.01;
*** p < 0.001. ChrebpTOT, Carbohydrate-responsive element-binding protein; mTOR, Machanistic
target of repemycin; PYGL, Phosphorylase, glycogen, liver; IRS2, Insulin receptor substrate 2; PPAR,
Peroxisome proliferator-activated receptor; SREBP, Sterol regulatory element-binding protein; HMGCS,
Hydroxymethylglutaryl-CoA synthase; GPAM, Glycerol-3-phosphate acyltransferase 1 mitochondrial;
DGAT, Diacylglycerol O-acyltransferase; SCD1, Stearoyl-CoA desaturase 1; FAS, fatty acid synthase.

4. Discussion

The aim of this study was to examine how one period of simulated night-shift work affects
metabolism in male rats. Results show that three successive days, each with 8 h of forced activity, led
to a shift in the feeding rhythm during the rest-work sessions in rats. Measures of food intake and
body weight appear to partially stabilize after three days of rest-work, indicating an adaptation in the
regulation of metabolism at this time point.

In this study, both RW and AW exhibited an overall reduction in food intake during the four-day
work period. Other studies in animals report inconsistent results regarding food intake during
day- and night-shift work. A review of animal models of shift work and effects on metabolism found
that effects depended on the species examined (rat or mouse) and the protocol used (manipulate timing
of activity, light, food intake, and/or sleep) [21]. In human night workers, a recent meta-analysis
reported no change in total calorie intake [26], although there are many other documented changes,
such as timing of food intake, number, size, and nutritional content of meals [27].

Our data demonstrated that the metabolic gene expression after three days of work was more
affected in RW than in AW. Correspondingly, a previous study concluded that following a long
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period (five weeks) of forced shift work, synchronization of clock genes (controlled by the SCN) and
metabolic genes was lost in the liver of RW rats, primarily due to a shift in food intake towards the
rest phase [28]. We found that the gene encoding Irs2 (which is linked to liver insulin sensitivity and
lipid metabolism) was upregulated in RW, in correspondence with reduced total food intake [29–31].
Upregulation of the gene encoding the central cholesterol-producing enzyme Hmgcs1 could also be
related to reduced food intake, with SREBP2 activation triggered by reduced sterol levels in the liver.
However, the genes encoding Fasn—the rate-limiting enzyme in de novo fatty acid synthesis—and
Gpam–which catalyses the first acylation step in the synthesis of glycerophospholipids—were also
upregulated in RW. Such upregulation would not be expected to accompany decreased food intake [32].
The increased hepatic expression of these genes in RW may be indicative of paradoxical or
compensatory fatty acid and triglyceride synthesis in the liver, via as-of-yet undisclosed molecular
mechanisms. In addition, the reduced expression of Ppara—indicating decreased fatty acid
oxidation—is paradoxical. This uncoupling between food intake, body weight, and lipid
biosynthesis/oxidation underlines the metabolically-disruptive potential of rest-work.

While these data on liver gene expression clearly suggest effects of rest phase work, the results
should be considered with some care, for several reasons. First, liver gene expression was measured
at only a single time point after three work days in both the AW and RW groups. Since time of day
was controlled for by comparing gene expression of working animals to undisturbed time-matched
controls, the results do not reflect effects of zeitgeber time only, but more probably reflect the effects of
forced activity. Nevertheless, a more detailed study is required to understand the temporal dynamics
of these changes in gene expression, not only in the course of the four-day work period, but also during
recovery thereafter. Second, in our current protocol, animals were fasted from 2 h before euthanasia,
but this may not fully exclude the possibility that our gene expression data were affected by difference
in food intake prior to tissue harvesting. Additionally, for this reason, future studies are required
to assess in more detail the complex interactions between food intake, metabolic state, and gene
expression in the liver. Moreover, in order to examine the significance of transcriptional alterations,
relevant protein levels and metabolites such as glucose, insulin, and lipids should be investigated in
future studies.

Very few animal studies report or discuss immediate early metabolic effects of night-shift work.
Some studies present day-by-day body weight data visually, and appear to indicate a shift in metabolic
(body weight) regulation following 2–3 days of simulated night-shift work, but this shift is generally
not acknowledged or discussed [33–35]. Our data demonstrated that AW maintained a normal rhythm
of food intake during the work period, consuming most of the food during their usual active phase,
whereas RW gradually shifted timing of food intake towards working hours in their normal rest phase,
with a stable high food intake reached and maintained at the third work session. A shift in timing of
food intake is consistent with previous findings in the laboratory rat [36]. In parallel, human night-shift
workers typically consume the majority of their calories during shifts [37]. Interestingly, the shift in
food intake occurred between work days two and three in our study—a time window that parallels
the shift in metabolism-related processes during simulated night-shift in humans [20,38].

In accordance with the overall reduction in food intake, a net weight loss was observed during the
shift work period. Weight loss was more evident in RW than AW, and although body weight increased
sharply during the eight-day recovery period, RW did not fully recover body weight to baseline level.
Previous studies have reported both weight gain and weight loss during simulated rest-work [34,36].
However, in these studies, rats were exposed to much longer periods of rest-work (4–5 weeks), making
it difficult to directly compare our short-term results. Additionally, in the present study, simulated
work was achieved with wheels rotating at a faster pace than in previous studies (e.g., [34,36]),
which might explain a more negative energy balance. Still, the rats in our study were forced to walk
only approximately 1.1 km each work session. Although this physical activity is not considered
strenuous, as rats with free access to a running wheel may voluntarily run 6–9 km each day [39],
the work sessions may have contributed to weight loss through increased energy expenditure. Such
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increased energy expenditure might be a direct consequence of the increased physical activity, but it
might also partly depend on indirect mechanisms, such as an elevated body temperature. Intriguingly,
this presumed increase in energy expenditure was not compensated for by food intake.

While the rats in the RW group consumed more food during the 8 h work sessions than they
normally would during the same phase of the day under baseline conditions, they reduced food intake
during the 16 h period between sessions (the net result being a reduction in 24-h food intake). Despite
this reduction in energy intake between work sessions, body weight increased between sessions,
presumably because the lower energy intake was compensated for by parallel reduction in energy
expenditure. In agreement with this, RW body temperature was decreased between sessions, perhaps
partly as a consequence of increased sleep [23]. This possibly represents a compensatory mechanism
aimed at maintaining body weight. A previous study in humans suggests that two to three days of
night-shift work is required for such metabolic compensatory mechanisms to take effect [20]. Thus,
it may be that the initial days of night-shift work are the most straining on the metabolic system.
Measurements of thermogenesis could have shed light on the energy expenditure gap demonstrated
by our results, and should be included in future experiments.

Mean body temperature levels in AW rapidly normalized on the first day of recovery. Surprisingly,
while RW initially recovered from the aberrant mean body temperature patterns displayed during the
work period, they developed progressive hypothermia in the rest phase later on in the recovery phase.
On recovery day eight, rest phase mean body temperature was almost 0.3 ◦C lower than at baseline.
Since recordings were ended at recovery day eight, we do not know how many days hypothermia
lasted, or how severe it became. The long-term effect on body temperature may be due to either
stress, metabolic dysfunction, or a combination of both [40–43]. Based on the unexpected failure of all
parameters to return to baseline levels, future studies should aim to prolong recovery time after forced
work periods.

The model applied in the present study inherently entails that RW were exposed to light during
work sessions, whereas AW were not. Due to the study design, we are precluded from investigating
the contribution of light exposure to the metabolic changes. This should be addressed in future studies.

5. Conclusions

Our results indicate that in male rats, 3–4 days of forced work is sufficient to induce disruption to
several metabolic parameters, particularly in rats exposed to forced activity during their rest phase.
The current findings suggest that the initial days of night-shift work put the most strain on the
metabolic system, inducing compensatory effects after 2–3 days, and that neither body weight nor
body temperature is fully normalized in eight days of recovery.
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