291 research outputs found

    Theory of transverse spin dynamics in a polarized Fermi liquid and an itinerant ferromagnet

    Full text link
    The linear equations for transverse spin dynamics in a weakly polarized degenerate Fermi liquid with arbitrary relationship between temperature and polarization are derived from Landau-Silin phenomenological kinetic equation with general form of two-particle collision integral. Unlike the previous treatment where Fermi velocity and density of states have been taken as constants independent of polarization here we made derivation free from this assumption. The obtained equations are applicable for description of spin dynamics in paramagnetic Fermi liquid with finite polarization as well in an itinerant ferromagnet. In both cases transverse spin wave frequency is found to be proportional to the square of the wave vector with complex constant of proportionality (diffusion coefficient) such that the damping has a finite value at T=0. The polarization dependence of the diffusion coefficient is found to be different for a polarized Fermi liquid and for an itinerant ferromagnet. These conclusions are confirmed by derivation of transverse spin wave dispersion law in frame of field theoretical methods from the integral equation for the vortex function. It is shown that similar derivation taking into consideration the divergency of static transverse susceptibility also leads to the same attenuating spin wave spectrum.Comment: 7 pages, no figure

    Fermi-liquid theory of the surface impedance of a metal in a normal magnetic field

    Full text link
    In this paper we present detailed theoretical analysis of the frequency and/or magnetic field dependence of the surface impedance of a metal at the anomalous skin effect. We calculate the surface impedance in the presence of a magnetic field directed along the normal to the metal surface. The effects of the Fermi-liquid interactions on the surface impedance are studied. It is shown that the cyclotron resonance in a normal magnetic field may be revealed {\it only and exclusively} in such metals whose Fermi surfaces include segments where its Gaussian curvature turns zero. The results could be applied to extract extra informations concerning local anomalies in the Fermi surface curvature in conventional and quasi-two-dimensional metals.Comment: 10 pages, 1 figure, text added and rearranged, computational details are moved into Appendice

    Field Theoretic Description of Ultrarelativistic Electron-Positron Plasmas

    Get PDF
    Ultrarelativistic electron-positron plasmas can be produced in high-intensity laser fields and play a role in various astrophysical situations. Their properties can be calculated using QED at finite temperature. Here we will use perturbative QED at finite temperature for calculating various important properties, such as the equation of state, dispersion relations of collective plasma modes of photons and electrons, Debye screening, damping rates, mean free paths, collision times, transport coefficients, and particle production rates, of ultrarelativistic electron-positron plasmas. In particular, we will focus on electron-positron plasmas produced with ultra-strong lasers.Comment: 13 pages, 7 figures, 1 table, published versio

    Constrained minimization in the C# # environment

    Get PDF
    Abstract On the basis of the ideas, proposed by one of the authors (I.N. Silin), a suitable software has been developed for constrained data "tting. Constraints may be of arbitrary type; i.e. equalities and inequalities. The simplest possible way has been used. The widely known program FUMILI was re-written in the C# # language. Constraints in the form of inequalities ( )5a were taken into account by changing them into equalities ( )"t and simple inequalities of type t5a. The equalities were taken into account by means of quadratic penalty functions. The suitable software was tested on the model data for the ANKE setup (COSY accelerator, Forschungszentrum JuK lich, Germany)

    Molecular random walks and invariance group of the Bogolyubov equation

    Full text link
    Statistics of molecular random walks in a fluid is considered with the help of the Bogolyubov equation for generating functional of distribution functions. An invariance group of solutions to this equation as functions of the fluid density is discovered. It results in many exact relations between probability distribution of the path of a test particle and its irreducible correlations with the fluid. As the consequence, significant restrictions do arise on possible shapes of the path distribution. In particular, the hypothetical Gaussian form of its long-range asymptotic proves to be forbidden (even in the Boltzmann-Grad limit). Instead, a diffusive asymptotic is allowed which possesses power-law long tail (cut off by ballistic flight length).Comment: 23 pages, no figures, LaTeX AMSART, author's translation from Russian of the paper accepted to the TMPh (``Theoretical and mathematical physics''

    A number-conserving linear response study of low-velocity ion stopping in a collisional magnetized classical plasma

    Full text link
    The results of a theoretical investigation on the low-velocity stopping power of the ions moving in a magnetized collisional plasma are presented. The stopping power for an ion is calculated employing linear response theory using the dielectric function approach. The collisions, which leads to a damping of the excitations in the plasma, is taken into account through a number-conserving relaxation time approximation in the linear response function. In order to highlight the effects of collisions and magnetic field we present a comparison of our analytical and numerical results obtained for a nonzero damping or magnetic field with those for a vanishing damping or magnetic field. It is shown that the collisions remove the anomalous friction obtained previously [Nersisyan et al., Phys. Rev. E 61, 7022 (2000)] for the collisionless magnetized plasmas at low ion velocities. One of major objectives of this study is to compare and contrast our theoretical results with those obtained through a novel diffusion formulation based on Dufty-Berkovsky relation evaluated in magnetized one-component plasma models framed on target ions and electrons.Comment: Submitted to Phys. Rev. E, 17 pages, 4 figure

    True Dielectric and Ideal Conductor in Theory of the Dielectric Function for Coulomb System

    Full text link
    On the basis of the exact relations the general formula for the static dielectric permittivity e(q,0) for Coulomb system is found in the region of small wave vectors q. The obtained formuladescribes the dielectric function e(q,0) of the Coulomb system in both states in the "metallic" state and in the "dielectric" one. The parameter which determines possible states of the Coulomb system - from the "true" dielectric till the "ideal" conductor is found. The exact relation for the pair correlation function for two-component system of electrons and nuclei g_ei(r) is found for the arbitrary thermodynamic parameters.Comment: 5 pages, no figure

    Transient optical response of ultrafast nonequilibrium excited metals: Effects of electron-electron contribution to collisional absorption

    Get PDF
    Approaching energy coupling in laser-irradiated metals, we point out the role of electron-electron collision as an efficient control factor for ultrafast optical absorption. The high degree of laser-induced electron-ion nonequilibrium drives a complex absorption pattern with consequences on the transient optical properties. Consequently, high electronic temperatures determine largely the collision frequency and establish a transition between absorptive regimes in solid and plasma phases. In particular, taking into account umklapp electron-electron collisions, we performed hydrodynamic simulations of the laser-matter interaction to calculate laser energy deposition during the electron-ion nonequilibrium stage and subsequent matter transformation phases. We observe strong correlations between optical and thermodynamic properties according to the experimental situations. A suitable connection between solid and plasma regimes is chosen in accordance with models that describe the behavior in extreme, asymptotic regimes. The proposed approach describes as well situations encountered in pump-probe types of experiments, where the state of matter is probed after initial excitation. Comparison with experimental measurements shows simulation results which are sufficiently accurate to interpret the observed material behavior. A numerical probe is proposed to analyze the transient optical properties of matter exposed to ultrashort pulsed laser irradiation at moderate and high intensities. Various thermodynamic states are assigned to the observed optical variation. Qualitative indications of the amount of energy coupled in the irradiated targets are obtained. Keywords: ultrafast absorption ; umklapp electron-electron collision ; collisional absorption ; laser-matter interactio
    • …
    corecore