
Eur. Phys. J. D 55, 271–278 (2009)
DOI: 10.1140/epjd/e2009-00077-9

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL D

Ultrarelativistic electron-positron plasma

M.H. Thomaa

Max-Planck-Institut für extraterrestrische Physik, Gießenbachstr., 85748 Garching, Germany

Received 6 October 2008 / Received in final form 19 January 2009
Published online 13 March 2009 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2009

Abstract. Ultrarelativistic electron-positron plasmas can be produced in high-intensity laser fields and
play a role in various astrophysical situations. Their properties can be calculated using QED at finite
temperature. Here we will use perturbative QED at finite temperature for calculating various important
properties, such as the equation of state, dispersion relations of collective plasma modes of photons and
electrons, Debye screening, damping rates, mean free paths, collision times, transport coefficients, and
particle production rates, of ultrarelativistic electron-positron plasmas. In particular, we will focus on
electron-positron plasmas produced with ultra-strong lasers.

PACS. 52.27.Ep Electron-positron plasmas – 11.10.Wx Electron-positron plasmas

1 Introduction

Plasmas, i.e. (partly) ionized gases, are considered to be
the fourth state of matter after the solid, liquid, and
gaseous states. The plasma state dominates in the observ-
able Universe: 99% of the visible matter is in the plasma
state, namely in the form of stars and hot interstellar and
intergalactic gases. Plasmas emit light due to the excita-
tion of atoms and ions and recombination. Plasmas can
be produced by high temperatures, such as in the sun or
fusion reactors, by electric fields (discharges), as used for
illumination in neon tubes or in lightening, or by radia-
tion, such as in the Crab nebula where the pulsar in the
center emits synchrotron radiation.

Plasmas can be classified according to various aspects:
relativistic plasmas, e.g. the electron-positron plasma in
a supernova explosion, are plasmas in which the ther-
mal energy kBT of the plasma particles is of the order
of their rest mass energy mc2 or larger. Quantum plas-
mas, e.g. the degenerate electron component in a white
dwarf, are plasmas in which the thermal de Broglie wave
length λB = h/(mvth) is of the order of the interparticle
distance d or larger. Here vth is the thermal velocity of the
particles. Strongly coupled plasmas, e.g. the ion compo-
nent in white dwarfs, are plasmas in which the interaction
energy between the particles is larger than their thermal
energy. In non-relativistic plasmas this corresponds to a
Coulomb coupling parameter ΓC = Q2/(dkT ) > 1.

Plasmas in nature, like in comets, in aurorae, in the
corona of the sun, in lightening, in flames, or in the sun,
and in technology, like in discharges or fusion reactors,
cover a wide range of pressures and temperatures. All of
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these plasmas are non-relativistic, classical, and weakly
coupled systems.

Electron-positron plasmas (EPPs) are created in the
presence of strong electric or magnetic fields or extremely
high temperatures, where massive pair production sets in.
For example in a supernova explosion temperatures up to
3 × 1011 K corresponding to kBT � 30 MeV � 2mec

2 =
1.022 MeV will lead to an ultrarelativistic EPP [1]. Also in
the vicinity of magnetars, i.e. neutron stars with magnetic
fields B > 1014 G, and in accretion disks around black
holes EPPs show up.

Recently the possibility to create ultrarelativistic
EPPs with high-intensity lasers (I > 1018 W/cm2) have
been discussed. For example two opposite laser pulses hit-
ting a thin gold foil will heat up the electrons in the foil
up to several MeV leading to pair creation [2].

In the following we will discuss the properties of an
ultrarelativistic EPP using quantum field theory (QED)
at finite temperature. We will follow closely the review
article [3]. We will not discuss the production mechanism
and equilibration of the EPP here.

2 Field theoretic description
of an electron-positron plasma

Throughout the paper we will use natural units, i.e. � =
c = kB = 1, as usual in quantum field theory, in which
all units are given in powers of MeV. The conversion to
conventional units can be achieved by 1 = �c = 1.97 ×
10−13 MeV m from which 1MeV = 1.60×10−13J =̂ 5.08×
1012 m−1 =̂ 1.52 × 1021 s−1 follows. In these units the
electron charge e = 0.3 corresponding to a fine structure
constant α = e2/(4π) = 1/137.
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2.1 Equation of state

We will start with the equation of state of an EPP and
compute it under the following assumptions:

1. ultrarelativistic EPP, i.e. T � m,
2. thermal and chemical equilibrium,
3. equal electron and positron density, i.e. vanishing

chemical potential,
4. ideal gas, i.e. no interactions in the plasma,
5. infinitely extended, homogeneous, and isotropic EPP.

We will relax some of these assumptions in the following
sections. According to these assumptions the distribution
function of the electrons and positrons is given by the
Fermi-Dirac distribution

nF (p) =
1

ep/T + 1
(1)

and of the photons by the Bose-Einstein distribution

nF (p) =
1

ep/T − 1
, (2)

where the momentum p is identical to the energy E of the
particles in the ultrarelativistic case. It should be noted
that the photons are in equilibrium with electrons and
positrons under the above assumptions, i.e. the system is
actually an electron-positron-photon gas.

The particle and energy density can be calculated by
integrating over the distribution functions. The particle
number density of the electrons and positrons follows from
integrating over the Fermi-Dirac distribution as

ρeq
e = gF

∫
d3p

(2π)3
nF (p) =

3
π2

ζ(3) T 3 = 0.37 T 3, (3)

where gF = 4 is the number of degrees of freedom corre-
sponding to the electrons and positrons in the two spin
states. Assuming a temperature of T = 10 MeV, we find
ρeq

e = 370 MeV3 = 4.9 × 1040 m−3.
The photon density follows accordingly by integrating

over the Bose-Einstein distribution with gB = 2 degrees
of freedom corresponding to the two polarization states as
ρeq

ph = (2/π2) ζ(3) T 3 = 0.24 T 3.
The energy density of the electron-positron-photon gas

is obtained from

εeq = gF

∫
d3p

(2π)3
p nF (p) + gB

∫
d3p

(2π)3
p nB(p)

=
11π2

60
T 4 = 1.81 T 4, (4)

where the photons contribute 36 % to the energy density.
Here the Boltzmann law, εeq ∼ T 4, holds also for the
fermions because we neglected their masses.

For T = 10 MeV we find εeq = 3.8 × 1029 J m−3.
In a volume of 1012 m3 (corresponding to the size of
a neutron star) the total thermal energy of the EPP is
3.8×1041 J, which corresponds to about 10% of the entire
energy (without neutrinos) released in a supernova type

II explosion. In a volume of 1 μm3 there is still an energy
of 3.8 × 1011 J contained. It is hard to imagine that such
an energy can be provided by a laser experiment where
a more dilute, i.e. non-equilibrium, EPP is expected (see
Sect. 2.4).

The Coulomb coupling parameter of the EPP, which
is a measure for the non-ideal behavior of a plasma [4],
is given by ΓC = e2/(dT ), where d � ρeq

e
−1/3 = 2.7 ×

10−14 m is the interparticle distance. For T = 10 MeV
we find ΓC = 5.3 × 10−3 which shows that the EPP is
a weakly coupled plasma. Therefore the ideal gas results
for the equation of state derived above are a good ap-
proximation. After all, interactions in the EPP play an
important role, for example, for the collective behavior of
the plasma as discussed in the next section and for equili-
bration of the plasma. Obviously, the interactions can be
treated by perturbation theory.

2.2 Collective phenomena

Collective effects in a plasma are associated with long-
range interactions within the plasma. Important examples
are Debye screening and plasma waves. In non-relativistic
ion-electron plasmas [5] plasmas these phenomena can be
described by classical transport theory (Vlasov equation).
For example, the electron plasma frequency reads

ωpl =

√
4πe2ρe

me
(5)

and the Debye screening length due to the electrons in the
plasma

λD =

√
kBTe

4πe2ρe
, (6)

where ρe is the electron number density, Te the tempera-
ture of the electron component, and me the electron mass.
In an ultrarelativistic plasma with T � m the masses can
be neglected and the important scales are the tempera-
ture T , called the hard scale, and the soft scale eT , which
determines the collective phenomena as we will see below.

Interactions between relativistic electrons and
positrons can be treated by using perturbative QED.
This corresponds to an expansion in the fine structure
constant α. Most conveniently Feynman diagrams are
considered from which via Feynman rules quantities such
as scattering cross sections, decay and production rates,
or life times can be calculated directly. In an EPP the
interactions take place in the presence of a heat bath.
Hence we have to consider QED at finite temperature.
For this purpose the Feynman rules are extended to
finite temperature which can be achieved by using the
imaginary or real time formalism [6,7]. The calculations
are similar to the ones done already within the last 30
years for the properties of the quark-gluon plasma using
perturbative QCD at finite temperatures. As a matter of
fact, many results from the quark-gluon plasma (see e.g.
Ref. [8]) can be directly carried over to the EPP.
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K

Fig. 1. One-loop polarization tensor.

An important quantity is the polarization tensor or
photon self-energy. The lowest order diagram for the po-
larization tensor is shown in Figure 1. Assuming the ex-
ternal four momentum K = (k0,k) to be soft, i.e. the
frequency k0 = ω and k = |k| to be much smaller than
T , and the internal loop momenta to be hard, an ana-
lytic result can be found using the real or imaginary time
formalism [9,10]

ΠL(ω, k) = −3m2
ph

(
1 − ω

2k
ln

ω + k

ω − k

)
,

ΠT (ω, k) =
3
2

m2
ph

ω2

k2

[
1 −

(
1 − k2

ω2

)
ω

2k
ln

ω + k

ω − k

]
(7)

where mph = eT/3 is called the effective photon mass. For
T = 10 MeV we get mph = 1 MeV.

The crucial quantity from which the collective phe-
nomena are derived is the dielectric tensor relating the
macroscopic electric field Di in the medium to the exter-
nal field Ei (i = x, y, z), i.e. in momentum space

Di(ω,k) =
∑

j

εij(ω,k) Ej(ω,k). (8)

In the case of an isotropic medium it depends only on ω
and on k and has two independent components

εij(ω, k) = εT (ω, k)
(

δij − kikj

k2

)
+ εL(ω, k)

kikj

k2
. (9)

The dielectric tensor is closely related to the polarization
tensor or photon self-energy by [11]

εL(ω, k) = 1 − ΠL(ω, k)
k2

,

εT (ω, k) = 1 − ΠT (ω, k)
ω2

, (10)

where ΠL and ΠT are the longitudinal and transverse
components of the polarization tensor, respectively.

The dielectric functions following from (10) and (7)
can also be derived from the classical Vlasov equation to-
gether with the Maxwell equations [12], since the high-
temperature limit corresponds to the classical limit.

The dispersion relations of collective plasma modes,
i.e. propagation of electromagnetic waves in the plasma,
can be found by using the Maxwell equation, leading to

εL(ω, k) = 0,

εT (ω, k) =
k2

ω2
. (11)
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Fig. 2. Photon dispersion relation.

Combining (10), (7), and (11) gives the dispersion rela-
tions ωL,T (k) of the transverse as well as longitudinal
plasma waves as shown in Figure 2. The longitudinal
branch, which does not exist in vacuum, is called plas-
mon as in the case of non-relativistic plasmas. The trans-
verse branch does not play a role in non-relativistic plas-
mas but is equally important as the longitudinal one in
relativistic plasmas. Both branches start at the plasma
frequency ωpl = ωL,T (k = 0) = mph. Consequently the
collective plasma waves have soft momenta of the order
eT . At high momenta k � mph the transverse mode ap-
proaches the free dispersion ωT = k, corresponding to a
real photon in vacuum, whereas the longitudinal mode
disappears, i.e. its spectral strength is exponentially sup-
pressed. For T = 10 MeV we find ωpl = 1.5 × 1021 s−1.

Another important quantity which can be derived from
the polarization or dielectric tensor is the Debye screen-
ing length, entering the Yukawa potential of a heavy, non-
relativistic test charge in the EPP. The Debye screening
length is given by the static limit of the longitudinal com-
ponent of the polarization tensor 1/ΠL(ω = 0), leading to
λD = 1/(

√
3mph), which is 1.1×10−13 m for T = 10 MeV.

Finally from (7) we see that the polarization tensor and
the dielectric function become imaginary for ω2 < k2, i.e.
below the light cone ω = k, corresponding to a collisionless
dissipation following from the Vlasov approach, which is
known as Landau damping in the non-relativstic case [5].
We also observe that the plasma waves calculated at lowest
order perturbation theory are undamped since they are
located at ω > k.

A complete new phenomenon that does not appear
in non-relativistic plasmas is the existence of fermionic
plasma waves because all fermion masses are much too
large in the non-relativistic case. Their dispersion relations
follow from the pole of the electron propagator containing
the electron self-energy. Using again the high tempera-
ture approximation for the one-loop electron self-energy
of Figure 3 leads to (P = (p0,p), p = |p|) [9,13]

Σ(P ) = −a(p0, p) Pμγμ − b(p0, p) γ0 (12)
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Fig. 3. One-loop electron self-energy.

with

a(p0, p) =
1

4p2
[tr(Pμγμ Σ) − p0 tr(γ0 Σ)],

b(p0, p) =
1

4p2

[
P 2 tr(γ0 Σ) − p0 tr(Pμγμ Σ)

]
, (13)

where the traces over the γ matrices are given by

tr(P μγμ Σ) = 4 m2
F ,

tr(γ0 Σ) = 2 m2
F

1
p

ln
p0 + p

p0 − p
(14)

with the effective electron mass mF = eT/
√

8, which is
1.1 MeV at T = 10 MeV.

The full electron propagator in the helicity represen-
tation is given by [14]

S�(P ) =
1

2D+(P )
(γ0 − p̂γ) +

1
2D−(P )

(γ0 + p̂γ), (15)

where

D±(P )=−p0±p+
1
4p

[±tr(Pμγμ Σ)−(±p0 − p) tr(γ0 Σ)].

(16)
The dispersion relations following from the pole of this
propagator are shown in Figure 4. Again two branches
show up, one with a positive ratio of the helicity to chi-
rality (ω+) following from D+ = 0, the other one with a
negative ratio (ω−) following from D− = 0, called plas-
mino [14]. The plasmino branch ω−, which does not exist
in vacuum, shows an interesting behavior, namely a min-
imum at k = 0.41mF , which may lead to van Hove singu-
larities [14,15]. Whether these van Hove singularities will
lead to observable effects in the EPP, e.g. in the electron
spectrum, is a very interesting question which should be
investigated in detail. It could open the exciting possibil-
ity to observe a new collective plasma wave, the plasmino,
experimentally in a laser induced EPP.

2.3 Transport properties

Now we want to consider the interaction and properties
of particles in the plasma with hard momenta, i.e. of the
order of T or larger. In particular we are interested in
damping and transport rates, mean free paths, collision
times, energy losses of these particles and other transport
properties such as the shear viscosity of the EPP.

It was shown by Braaten and Pisarski [16] that a con-
sistent treatment of gauge theories such as QED at finite

Fig. 4. Electron dispersion relation.

P

K

Fig. 5. Lowest order diagram for electron-electron scattering.

temperature, i.e. for obtaining results that are gauge in-
dependent, infrared finite, and complete to leading order,
require the use of an effective perturbation theory using
resummed Green functions based on the hard thermal loop
(HTL) approximation (HTL resummation technique).

The damping rate of an electron or positron in the EPP
is defined as the imaginary part of the dispersion relation
ωL,T (p). To lowest order it follows from the elastic scat-
tering diagram of Figure 5. In the case of a hard electron
or positron with momenta of the order of T or higher it
exhibits a quadratic infrared (IR) divergence which can be
reduced to a logarithmic one using a HTL resummed pho-
ton propagator. This logarithmic singularity is expected
to be cut-off by higher order contributions leading to [8]

γe =
e2T

4π
ln

1
e

(17)

within logarithmic accuracy, i.e. the constant under the
logarithm is not determined. For T = 10 MeV we obtain
γe = 86 keV, which is much smaller than ωpl = 1 MeV,
showing that the EPP is not overdamped.

Physically more important are the transport rates Γ
which are related to the mean free path and collision time
of electrons and positrons in the EPP. They differ from
the damping rate in cutting off the long range interactions
with small scattering angles θ by a factor (1−cos θ) under
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Fig. 6. Diagrams defining the collisional energy loss.

the integral defining the rate [5]. This leads to an improve-
ment of the IR behavior (logarithmic instead of quadratic
singularity in perturbation theory) and a finite result using
the HTL method. Logarithmic divergent quantities can be
treated consistently by splitting them into a soft part and
a hard part, where the soft part is calculated using the
HTL resummation technique [17]. For the transport rate
we find to logarithmic accuracy

Γe =
e4T 3

3πs
ln

1
e
, (18)

where the Mandelstam variable s = (P +K)2 is the square
of the sum of the four momenta of the incoming particles
in the scattering diagram of Figure 5. For thermal particles
we replace s by its thermal average 〈s〉 = 2〈p〉e〈k〉e �
19.3T 2, where 〈p〉e = 〈k〉e = εeq

e /ρeq
e = 3.11 T . Assuming

again T = 10 MeV, we get Γe = 0.54 keV.
The mean free path λmfp

e and collision time τe of the
plasma particles (electrons and positrons) are given by
the inverse of the transport rate 1/Γe, leading to λmfp

e =
0.37 nm and τe = 1.2 × 10−18 s at T = 10 MeV.

In a non-relativistic plasma the shear viscosity can be
estimated from elementary kinetic theory as [18]

ηi =
1
3

∑
i

ρi 〈pi〉 λmfp
i (19)

where the sum is performed over the various components
of the system. In an relativistic plasma the coefficient 1/3
should be replaced by 4/15 [19]. Using the mean free path
following from (18), the density of (3), and the thermal
momentum 〈p〉e = 3.11 T , the shear viscosity is given by
(within logarithmic accuracy)

ηe =
55.8 T 3

e4 ln(1/e)
. (20)

At T = 10 MeV the shear viscosity coefficient is ηe =
7.9 × 1010 Pa s.

Another quantity of interest in a plasma is its stopping
power or the energy loss of an energetic particle in the
plasma. There are two contributions, namely the energy
loss by collisions and the radiative one by bremsstrahlung.
In a relativistic plasma the latter one becomes important.
The collisional energy loss is given by the mean energy
transfer divided by the mean free path leading to [20]

dE

dx
=

1
v

∫
dγ ω (21)

where v is the particle velocity, γ the damping or inter-
action rate proportional to the plasma density and the

Fig. 7. Diagrams defining the photon damping rate.

collision cross section, and ω the energy transfer from the
energetic particle to the plasma particle in the collision.
Using for the collision cross section the lowest order dia-
grams in Figure 6, the collisional energy of a muon with
mass M in an EPP has been calculated by Braaten and
Thoma [20] applying the HTL resummation technique

dE

dx
=

e4T 2

24π

(
1
v
− 1 − v2

2v2
ln

1 + v

1 − v

) (
ln

E

M
+ln

1
e
+A(v)

)
,

(22)
where A(v) is a slowly varying function of the muon ve-
locity v between 1.3 and 1.5.

The collisional energy loss of an electron with energy
E � T is approximately given by [20]

dE

dx
=

e4T 2

48π
ln

15.3E

e2T
. (23)

This leads to an energy loss of 200 MeV/nm for an elec-
tron or positron with an energy of E = 100 MeV at
T = 10 MeV, showing that such an electron is stopped
(thermalized) within a fraction of a nanometer. So far no
calculations of the radiative energy loss in an EPP have
been performed to our knowledge.

The damping rate of a photon in an EPP follows from
the diagram in Figure 7, where a HTL resummed electron
propagator has to be used in case of soft momenta of the
exchanged electron (positron). In contrast to the electron
damping rate, the photon rate is infrared finite using the
HTL method due to the presence of an electron propagator
in Figure 7 instead of the photon propagator in Figure 5.
Hence there is no need to cut off the long range interac-
tion introducing a transport cross section. The result for
a photon with energy E = p reads [21]

Γph =
e4T 2

64πE
ln

3.88E

e2T
. (24)

The mean free path and the collision time of photons in
an EPP are given by 1/Γph. For a thermal photon with
the mean momentum 〈p〉ph = εeq

ph/ρeq
ph = 2.75 T at T =

10 MeV the mean free path λmfp
ph = 0.28 nm and the

collision time τph = 9.4 × 10−19 s follow. Actually the
damping rate given in (24) is a lower limit as higher order
effects will enlarge it. As a matter of fact, the photon
production rate in a QGP, which is the inverse process of
the damping rate [21], was shown to be about a factor of
2 larger taking bremsstrahlung into account [22].

For the viscosity of the photon component using the
above mean free path, the photon density (see above), and
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Table 1.

Quantity Formula Value at T = 10 MeV

Electron-positron density ρeq
e = 3/π2 ζ(3) T 3 4.9 × 1040 m−3

Photon density ρeq
ph = 2/π2 ζ(3) T 3 3.2 × 1040 m−3

Electron-positron energy density εeq
e = 7π2/60 T 4 2.4 × 1029 J m−3

Photon energy density εeq
ph = π2/15 T 4 1.4 × 1029 J m−3

Total energy density εeq = 11π2/60 T 4 3.8 × 1029 J m−3

Thermal electron momentum 〈p〉e = εeq
e /ρeq

e = 3.11 T 31 MeV
Thermal photon momentum 〈p〉ph = εeq

ph/ρeq
ph = 2.75 T 28 MeV

Interparticle distance d � ρeq
e

−1/3 2.7 × 10−14 m
Coulomb coupling parameter Λ = e2/(dT ) 5.3 × 10−3

Effective photon mass mph = eT/3 1 MeV
Plasma frequency ωpl = mph 1.5 × 1021 s−1

Debye screening length λD = 1/(
√

3mph) 1.1 × 10−13 m

Effective electron mass mF = eT/(2
√

2) 1.1 MeV
Electron damping rate γe = e2T/(4π) ln(1/e) 86 keV
Electron transport rate Γe = e4T 3/(3πs) ln(1/e) 0.54 keV for s = 19.3 T 2

Photon damping rate Γph = e4T 2/(64πE) ln(3.88E/e2T ) 0.70 keV for E = 2.75 T
Electron mean free path λmfp

e = 1/Γe 0.37 nm

Photon mean free path λmfp
ph = 1/Γph 0.28 nm

Electron collision time τe = 1/Γe 1.2 × 10−18 s
Photon collision time τph = 1/Γph 9.4 × 10−19 s
Electron viscosity ηe = 55.8 T 3/[e4 ln(1/e)] 7.9 × 1010 Pa s
Photon viscosity ηph = 48.7 T 3/[e4 ln(3.27/e)] 3.5 × 1010 Pa s
Total viscosity η = ηe + ηph (1.1 − 1.6) × 1011 Pa s
Electron energy loss dE/dx = e4T 2/(48π) ln(15.3E/e2T ) 200 MeV/nm for E = 100 MeV

the mean photon energy 〈p〉ph = 2.75T we find

ηph =
48.7T 3

e4 ln(3.27/e)
(25)

corresponding to 3.5×1010 Pa s at T = 10 MeV. Hence the
viscosity of the EPP η = ηe+ηph has similar contributions
from the electrons and photons.

A more advanced calculation of the total viscosity of
the EPP based on the Kubo formula yields within loga-
rithmic accuracy [23]

η =
188T 3

e4 ln(1/e)
. (26)

This result is about a factor of 1.5 larger than the one
presented here based on the elementary kinetic theory,
which is typically valid within a factor of 2 [18].

A summary of the QED results of the EPP properties
discussed above is presented in Table 1.

2.4 Non-equilibrium and finite chemical potential

EPPs produced in strong laser fields are probably not in
complete equilibrium. For example, it has been predicted
by Shen and Meyer-ter-Vehn [2] that a positron density of
about 5 × 1028 m−3 at a temperature of 10 MeV can be
reached. This density deviates from the equilibrium den-
sity (3) by 12 orders of magnitude. In the following we
will therefore assume that the EPP produced by lasers
is in thermal but not in chemical equilibrium. Then we

can replace the distribution functions for the electrons
and positrons by Fermi-Dirac distributions multiplied by
a fugacity factor λ describing the deviation from chemical
equilibrium, fF (p) = λnF (p). This assumption has been
used for example for describing the chemical equilibration
of the QGP in ultrarelativistic heavy-ion collisions [24].
The fugacity is given by the ratio of the experimental to
equilibrium particle density, since the experimental den-
sity follows from integrating over the non-equilibrium dis-
tribution, i.e.

ρexp = gF

∫
d3p

(2π)3
λnF (p) = λρeq ⇒ λ = 10−12. (27)

Using the real time formalism, QED perturbation the-
ory and the HTL method can also be extended to non-
equilibrium situations like the one discussed above [25].
For example, the effective photon mass is given now by

m2
ph =

4e2

3π2

∫ ∞

0

dp p fF (p). (28)

For T = 10 MeV we then find for the non-equilibrium
photon mass mnoneq

ph =
√

λmph = 1 eV and the plasma
frequency ωnoneq

pl = 1.5 × 1015 Hz. The Debye screening
length in such an EPP is λD = 0.1 μm. In order to speak of
a plasma with collective behavior its dimension L should
be much larger than λD, i.e. at least of the order of 1 μm.

Note also that the mean free path of photons, which
is inversely proportional to the electron-positron density,
is much larger than the extension of the plasma droplet
in such a dilute EPP. Therefore photons escape from the
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Fig. 8. Lowest order contribution of the muon production.

plasma without interaction and may serve as a probe for
the interior and evolution of the EPP similar to photons
from a quark-gluon plasma fireball in an ultrarelativistic
plasma [27].

Furthermore, an anisotropic EPP can also be described
by quantum field theoretic methods [26]. In this case in-
stabilities can occur [28].

Finally a possible difference between the positron den-
sity and the electron density can be treated by introducing
a finite chemical potential μ, i.e. using the distribution

nF (p) =
1

e(p±μ)/T + 1
(29)

for the electrons (negative sign) and positrons (positive
sign). Such a difference comes from the fact that the laser
produced EPP is embedded in a hot electron and cold ion
background of the target. Therefore there will be an excess
of electrons over positrons in the hot, relativistic EPP. The
methods described above, such as the HTL resummation,
can be generalized easily to this case [29]. For example,
the energy density is given by

εeq =
11π2

60
T 4 +

1
2

T 2μ2 +
1

4π2
μ4 (30)

or the effective photon energy by

m2
ph =

e2T 2

9

(
1 +

3μ2

π2T 2

)
. (31)

2.5 Particle production

At high temperatures above 10 MeV also other parti-
cle species will be produced, e.g. muons with a mass of
mμ = 106 MeV. Their rate follows to lowest order from
the diagram in Figure 8 (Born term). We assume that
me 	 T 	 mμ holds. The first inequality implies that the
electron mass can be put to zero and the latter inequality
implies that muons are not equilibrated. Then the muon
production rate to lowest order (e−e+ → γ∗ → μ−μ+) is
given by (for more details see Ref. [3])

dN

d4xd4p
=

α2

24π4

(
1 +

2m2
μ

M2

)(
1 − 4m2

μ

M2

)1/2
T

p

× 1
exp(E/T ) − 1

ln
1 + exp[−(E + p)/(2T )]
1 + exp[−(E − p)/(2T )]

, (32)

where M2 = E2 − p2 is the invariant mass of the virtual
photon γ∗, E its energy and p = |p| its momentum. Be-
cause of M2 = E2 − p2 > 4m2

μ the rate is suppressed
exponentially for temperatures below 2mμ.

In order to obtain the spectrum from this formula one
has to integrate over the space-time volume, taking into
account the space-time evolution by using, for example,
a hydrodynamical model. The total muon yield then fol-
lows from integrating the spectrum over the energy and
momentum of the virtual photon.

At temperatures above 10 MeV also hadron production
becomes important, in particular pion production [30].

3 Conclusions

The aim of this presentation is the prediction of proper-
ties of ultrarelativistic thermalized EPPs produced in laser
fields or supernovae. The ultrarelativistic EPP is a weakly
coupled system. Therefore its equation of state can be de-
scribed in first approximation by an ideal ultrarelativistic
gas. Interactions within the EPP can be described by per-
turbative QED at finite temperature. In this way collective
phenomena (plasma waves, Debye screening) and trans-
port properties (damping rates, mean fee paths, relaxation
times, production rates, viscosity, energy loss) can be com-
puted. A complete new phenomenon, fermionic plasma
waves (plasmino), which is absent in non-relativistic plas-
mas, might be observable by van Hove singularities. The
deviation from chemical equilibrium, as expected for laser
produced EPPs, can also be treated by extending QED to
the non-equilibrium case.
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