JOINT INSTITUTE FOR NUCLEAR RESEARCH, DUBNA Report P1 - 5737

CM-P00100690

PHASE-SHIFT ANALYSIS OF pp SCATTERING AT 1 GeV

L.N. Glonti, Yu.M. Kazarinov,

A.M. Rozanova and I.N. Silin

Dubna 1971

Translated at CERN by R. Luther (Original: Russian) Not revised by the Translation Service

(CERN Trans. 71-39)

Geneva September 1971

PHASE-SHIFT ANALYSIS OF pp SCATTERING AT 1 GeV

L.N. Glonti^{*)}, Yu.M. Kazarinov,

A.M. Rozanova and I.N. Silin

Dubna 1971

*) Tbilisi State University

Statement of the Problem

The following assumptions were made when carrying out the phase-shift analysis:

1. A single-meson approximation is valid for the description of a pp interaction at 1 GeV in states with an orbital moment $\ell > 6$.

2. Mesons are mainly produced from initial ${}^{3}P_{0,1,2}$, ${}^{1}D_{0,1,2}$, and ${}^{3}F_{2,3,4}$ states.

3. The energy dependence of the experimental data used can be ignored and they can be related to 1 GeV within the limits of error (viz. table 1).

The applicability limit for a single-meson approximation is estimated on the basis of the results of the phase-shift analysis at 630 MeV^{/3/}, allowing for variation in the impact parameter during the transition to 1 GeV.

The assumption concerning the nature of the meson production processes was based on the fact that the angular distributions of the π -mesons produced in pp collisions at 1 GeV as well as at 650-660 MeV contain no terms higher than $\cos^4 \theta$ (θ is the π -meson's emission angle). It is also known that, for an adequate description of the experiment during phase-shift analysis at 630 MeV, it is sufficient to allow for phase complexity only in $P_{0,1,2}$, ${}^{1}D_{2}$ and ${}^{3}F_{2,3,4}$ states.

The experimental data used for the phase-shift analysis are shown in table 2. In order to eliminate the possibility of systematic errors in the results obtained by the various authors, the data were processed first. The differential cross-sections for elastic pp scattering measured in $^{6-9/}$ were renormalized to the total cross-section for elastic scattering σ elas. = 24.8 \pm 0.9 $^{/15/}$. The normalization factors are shown in the fourth column of table 2. To obtain corrected values for the differential cross-sections of the quantity $d\sigma/d\Omega$, shown in the papers listed (table 1), it is essential to divide them into the appropriate norms. The interaction's total cross-sections measured in papers /12/ and /13/ at 1.03 GeV and 1.075 GeV were averaged out. The error in measuring the polarization of the primary beam ($\approx 5\%$) is added quadratically to the results of the polarization measurements $^{12/}$. The data on differential cross-sections and polarization for angles $\theta > 90^{\circ}$ were reduced to the range $0^{\circ} \leq \theta \leq 90^{\circ}$ in terms of the known relations.

It is easy to work out that $3\ell_{max} + 1$ free parameters can be determined from the data in table 2 ($\sigma_{tot} + 1$; $\frac{d\sigma}{d\Omega} - \ell_{max} + 1$; P (θ)+ ℓ_{max} -1; $C_{nn} + \ell_{max} + 1$; $\sigma_{total}^{inelas.} + 1$ (or 21 parameters at $\ell_{max} = 6$). The number of phase-shifts to be determined at $\ell_{max} = 6$, if meson production from P, D and F states is taken into account,

is 22. The single-meson approximation used to describe a pp interaction in states with high orbital momenta provides the missing equations and the problem seems to be solved. However, there will clearly be a large number of solutions ($\approx 2^{\text{M}}$, where m is the required number of parameters^{(5/}). In order to obtain some overdetermination, as is required with nonlinear problems solved by the maximum-likelihood method, the experimental data also included four points obtained by extrapolating the energy dependence of the depolarization factor D_{pp} measured in the lower energy region (400 - 630 MeV). The errors in the values extrapolated were such that this parameter was positively determined with 0,99 probability.

The solutions were found from the functional minimum

condition

$$\boldsymbol{x}^{2} = \sum_{i=1}^{n} \left[\mathbf{F}_{exp} - \mathbf{F}_{i}(\boldsymbol{\delta}) \right]_{i=1}^{2} \mathbf{w}$$

where F is the value obtained by experiment, F (δ) is the calculated value of the quantity measured, W_i is the weight and n is the total number of experimental points used for the phase-shift analysis. The procedure used to search for solutions is described in detail in $^{/19/}$.

Results

The attempt to find a solution from random initial values and thus to verify that the solution to the problem was singlevalued did not meet with success. It turned out that the errors in the parameters found by this method were so great (100% or more) that no distinction could be made between the solutions within the limits of error. It was therefore decided to obtain a set of phase-shifts describing the experimental data at 1 GeV by extrapolating the solution found at 630 MeV $^{/3/}$. For this purpose, the phase shift values found in $^{/3/}$ were taken as initial values and were determined more accurately in terms of the experimental data shown in table 2. During this process, measures were taken to ensure that the energy dependences of S (E) were sufficiently smooth right up to 1 GeV.

The solution obtained is shown in table 3. The table also shows the results of phase-shift analyses at 630 MeV $^{/3/}$ and 1000 MeV $^{/4/}$. A comparison of the set of phase-shifts thus obtained with the solution found previously at 630 MeV $^{/3/}$ indicates that the experimental data at 1 GeV may be adequately described by assuming that there is a smooth dependence of phase-shifts on energy. There is no need to make any assumption about noticeable meson production from an initial ¹ S state, as the authors of paper $^{/4/}$ had to do at 1000 MeV.

The angular dependences of the values observed were calculated in terms of the set of phase-shifts obtained and are shown in figs. 1-6. The hatched areas in figs. 1-3 are the error margins of the curves. The error margin of the curves in figs. 4-6 for the angular dependences of the Wolffenstein parameters is 100%. It clearly follows from this that at present the most useful information for determining the pp-scattering amplitude can be obtained only from experiments on triple scattering. After this paper had been finished, fresh results concerning the measurement of differential cross-sections, polarization and depolarization were published (viz. table 1). Firstly, the D_{pp} depolarization at 90° (c.m.s.), measured at 984 MeV, unfortunately features an error of almost 100% and has virtually nothing new to offer in the way of information. The differential cross-sections and polarization measured in the $30^{\circ} - 90^{\circ}$ range correspond to previous data.

In conclusion, the authors wish to thank S.I. Bilen'kaya for her help with this paper.

Bibliography

1.	M.H.	MacGregor,	R.A.	Arndt,	R.M.	Wright.	Phys.Rev.,	173,	1272
		(1968).							

- 2. Z. Janout, Yu.M. Kazarinov, F. Lehar, A.M. Rozanova, Nucl.Phys., <u>A127</u>, 449 (1969).
- 3. S.I. Bilen'kaya, L.N. Glonti, Yu.M. Kazarinov, V.S. Kiselev. Zh.E.T.F. <u>59</u>, 1050 (1970).
- 4. N. Hoshisaki, T. Kadota. Preprint NEAP, May 1969.
- 5. N.P. Klepikov. Zh.E.T.F., <u>44</u>, 376 (1963).
- 6. W.K. McFarlane, R.J. Homer, A.W. O'Dell et al. Nuovo Cim., 28, 943 (1963).
- 7. J.D. Dowell, W.R. Frisken, G. Martelli et al. Nuovo Cim., <u>18</u>, 818 (1960).
- 8. L.W. Smith, A.W. McReynolds, G. Snow. Phys.Rev., <u>97</u>, 1186 (1955).
- 9. T.A. Murray, L. Riddiford, G.H. Grayer et al. Nuovo Cim., <u>49</u>, 261 (1967).
- 10. R.J. Homer, W.K. McFarlane, A.W. O'Dell et al. Nuovo Cim., 23, 690 (1962).
- 11. Y. Ducros. Rev. Mod. Phys., <u>39</u>, 531 (1967); Phys. Rev., <u>164</u>, 1672 (1967).
- 12. H.A. Neal, M.J. Longo. Phys. Rev., <u>161</u>, 1374 (1967).
- 13. F.F. Chen, C.P. Leavit, A.M. Shapiro. Phys. Rev., 103, 211 (1956)
- 14. M.J. Longo, J.A. Helland, W.N. Hess et al. Phys. Rev. Lett., <u>3</u>, 568 (1959).
- 15. D.V. Bugg, A.J. Oxley, J.A. Zoll et al., Phys. Rev., <u>133B</u>, 1017 (1964).
- 16. G.H. Grayer, J.D. Dowell, C.J. Adams et al. Lett. Nuovo Cim., <u>3</u>, 663 (1970).
- 17. M.G. Albrow, S.A. Anderson/Almened, B. Bošnjakovic et al. Nucl. Phys., <u>B23</u>, 445 (1970).
- D.V. Bugg, D.C. Salter, G.H. Stafford et al. Phys. Rev., <u>146</u>, 980 (1966).
- 19. Yu. M. Kazarinov, I.N. Silin. Zh.E.T.F., 43, 692 (1962).

20. H.P. Stapp, T.Y. Ypsilantis, N. Metropolis. Phys. Rev., <u>105</u>, 302 (1957).

The document was received by the Publishing Department on 8 April, 1971

Table 1.

E, MeV	9 °	f	۵f	source	E, MeV	6 •	f	Δf	source
PP	tota	l cross-sec	$rion \sigma_t$	ot ^{i (mb)}	PP	i	total cross	-section	б_{/1.} (mb)
968 970 1030 1073 1075		47,553 47,3 46,5 47,49 48,3	0,058 1,0 2,0 0,046 1,6	/18/ [×] /15/ /12/ /13/ /18/ [×]	970		22,48	0,8	/15/
PP			differ	ential cr	oss-sect	ion 'dO/	′dΩ	(mb/ste	er.)
950 970 991	35,90 38,73 43,12 49,45 54,55 58,67 62,62 67,05 70,12 73,74 77,88 81,95 86,55 89,43 12,30 48,30 59,73 70,83 81,55 14,5 19,0 23,0 30,5 40,0 59,5 70,0 59,5	6,71 6,30 4,76 3,51 2,58 2,26 1,65 1,45 1,00 0,99 0,65 0,73 0,78 19,600 3,506 2,037 1,185 0,898 18,620 14,280 12,460 10,334 5,430 3,200 1,860 1,041	0,5° 0,51 0,25 0,23 0,17 0,18 0,11 0,12 0,09 0,08 0,05 0,06 0,05 0,06 0,05 0,06 0,070 0,088 0,070 0,080 0,024 0,024 0,024 0,024 0,024 0,024 0,024 0,027 0,089 0,085 0,085	/17/*	1000	36,5 41,3 53,7 64,0 77,0 90,0 18,5 24,6 30,7 36,7 41,5 48,5 60,0 71,1 79,8 90,0 37,82 44,77 50,95 55,25 60,00 63,90 63,90 68,28 71,93 76,70 80,80 84,27	5,66 4,54 2,44 1,33 0,79 0,62 11,80 10,80 7,89 5,76 4,11 2,718 1,546 0,922 C,739 0,608 5,97 4,38 3,04 2,20 1,94 1,56 1,56 1,56 1,56 0,85 0,66 5,97 4,38 5,97 4,38 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 5,97 6,97 6,97 5,97 6,97 6,97 6,97 6,97 6,97 6,97 6,97 6	0,10 0,10 0,05 0,05 0,05 0,26 0,33 0,18 0,09 0,05 1 0,04 1 0,029 0,05 0,037 0,037 0,037 0,037 0,030 0,34 0,22 0,20 0,15 0,16 0,05 0,05 0,05 0,05 0,05 0,05 0,05 0,0	/8/ /7/ /17/ [*]

Experimental data on elastic pp scattering close to 1 GeV.

* not used in the search for solutions

Table 1 (Continued)

				Profiles and second					
E, MeV	0 ° c.m.s.	f	Δr '	source	E, MeV	0 °	f	۵t	BOUTCE
PP			- ⁻	polariza	tion	P			1
950 970 1029	29,55 35,90 38,73 43,12 54,55 52,62 67,05 70,74 77,88 86,555 89,43 12,50 224,500 224,500 224,500 36,550 48,300 59,600 42,000 42,000 45,400 50,000	0,41 0,437 0,53 0,44 0,47 0,36 0,25 0,20 0,22 0,22 0,22 0,22 0,22 0,22	0,03 0,04 0,05 0,03 0,04 0,05 0,05 0,05 0,07 0,08 0,08 0,08 0,09 0,13 0,155 0,070 0,082 0,067 0,0682 0,067 0,0682 0,067 0,0682 0,067 0,067 0,0682 0,067 0,025 0,025 0,027 0,025	/17/*	1030	51,20 50,00 84,60 67,20 75,60 79,40 87,00 39,47 53,60 57,81 61,62 57,81 61,62 57,825 30,825 37,255 80,825 37,600 80,827 80,807 80,907	0,330 0,330 0,285 0,265 0,210 0,092 0,092 0,090 0,097 0,419 0,464 0,417 0,325 0,245 0,225 0,245 0,225 0,245 0,225 0,255 0,255 0,255 0,255 0,255 0,255 0,255 0,255 0,255 0,255 0,255	0,020 0,029 0,029 0,029 0,020 0,020 0,020 0,020 0,029 0,020 0,080 0,080 0,080	/12/ /17/ ^x
PP _	pole	arization c	orrelatio	··· C _{nn}	PP	đej	polarization	•) D	
978	42,0 46,7 51,2 55,6 60,0 64,3 68,6 70,0 73,4 77,4	0,70 0,72 0,61 0,62 0,44 0,71 0,39 0,69 0,79	0,19 0,15 0,16 0,20 0,26 0,27 0,27 0,27 0,27 0,16 0,17	/11/	984	90,0	0,65	0,56	/16/*

* not used in the search for solutions

Table 2.

Experimental data processed.

exp.)	E, MeV	no. of points	norm	χ ²	source	remarks
σ ^{ρρ} tot	970 1030 1075	I I I		0,003 0,054	/15/ /14/ /13/	averaged
G total	970	I			/15/	
(d6/ds)	970 pp 991 1000 1010	4 8 5 9	I,I09 + 0,044 0,990 + 0,038 0,870 + 0,034 0,835 ± 0,031	4,8 20,1 7,6 13,0	/6/ /9/ /8/ /7/	renormalized to total inelastic cross-section (24,8 ± 0,9 mb)
P _{PP}	970 1029 1030	11 17 10		9,8 16,3 15,6	/10/ /11/ /12/	
Cnn	978	10		0,82	/11/	
D_{PP}		4			Y	e rtrapolat ion

Table 3.

Phase-shifts in degrees (Stapp match $^{/20/}$)

	630 Mev ^{/3/}	l GeV (this paper)	1 GeV /4/
12 19 19 19 10 10 10 10 10 10 10 10 10 10	$\begin{array}{c} 0,076 \pm 0,005 \\ -19,4 \pm 3,4 \\ -20,7 \pm 2,4 \\ -29,9 \pm 2,2 \\ 34,7 \pm 1,8 \\ 9,6 \pm 1,6 \\ 2,9 \pm 0,9 \\ -4,1 \pm 0,6 \\ 0,7 \pm 0,8 \\ 3,8 \pm 0,8 \\ 5,6 \pm 0,7 \\ 0,7 \pm 0,8 \\ 5,6 \pm 0,7 \\ 0,7 \pm 0,8 \\ -2,3 \pm 0,6 \\ -3,2 \pm 0,8 \\ -2,8 \pm 0,5 \\ \text{single-meson} \end{array}$	$\begin{array}{c} 0,07\\ -5,0\\ -41,1\\ -17,6\\ 55,0\\ 11,8\\ 3,8\\ -6,6\\ -0,3\\ 4,7\\ 6,4\\ -2,5\\ -3,51\\ +1,5\\ -3,7\\ -3,2\end{array}$	$\begin{array}{c} 0,08\\ -30,0\\ -37,5\\ -71,5\\ 16,9\\ 11,3\\ 43,5\\ -13,7\\ (-7,73)\\ (6,50)\\ (4,50)\\ (4,50)\\ (1,10)\\ (-2,00)\\ (2,40)\\ (0,669)\end{array}$
	imaginary	parts of phase shifts	\
⁴ So ³ Po ³ P1 ³ P2 ³ F2 ³ F2 ³ F3 ³ F4	$5,1 \pm 1,5$ $10,9 \pm 2,6$ $0,7 \pm 1,1$ $2,4 \pm 1,5$ $4,0 \pm 0,7$	2,0 30,2 5,4 6,8 4,9 9,4 16,5	40,0 9,0 0,0 16,0 13,2 10,0 18,0 3,0
χ² n		88 82	52 62

Fig. 1

Fig. 2

Fig. 4

Fig. 5

