23 research outputs found
TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control
The 18-kDa TSPO (translocator protein) localizes on the outer mitochondrial membrane (OMM) and participates in cholesterol transport. Here, we report that TSPO inhibits mitochondrial autophagy downstream of the PINK1-PARK2 pathway, preventing essential ubiquitination of proteins. TSPO abolishes mitochondrial relocation of SQSTM1/p62 (sequestosome 1), and consequently that of the autophagic marker LC3 (microtubule-associated protein 1 light chain 3), thus leading to an accumulation of dysfunctional mitochondria, altering the appearance of the network. Independent of cholesterol regulation, the modulation of mitophagy by TSPO is instead dependent on VDAC1 (voltage-dependent anion channel 1), to which TSPO binds, reducing mitochondrial coupling and promoting an overproduction of reactive oxygen species (ROS) that counteracts PARK2-mediated ubiquitination of proteins. These data identify TSPO as a novel element in the regulation of mitochondrial quality control by autophagy, and demonstrate the importance for cell homeostasis of its expression ratio with VDAC1
Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells
The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient
Alterations in voltage-sensing of the mitochondrial permeability transition pore in ANT1-deficient cells
The probability of mitochondrial permeability transition (mPT) pore opening is inversely related to the magnitude of the proton electrochemical gradient. The module conferring sensitivity of the pore to this gradient has not been identified. We investigated mPT's voltage-sensing properties elicited by calcimycin or H2O2 in human fibroblasts exhibiting partial or complete lack of ANT1 and in C2C12 myotubes with knocked-down ANT1 expression. mPT onset was assessed by measuring in situ mitochondrial volume using the 'thinness ratio' and the 'cobalt-calcein' technique. De-energization hastened calcimycin-induced swelling in control and partially-expressing ANT1 fibroblasts, but not in cells lacking ANT1, despite greater losses of mitochondrial membrane potential. Matrix Ca(2+) levels measured by X-rhod-1 or mitochondrially-targeted ratiometric biosensor 4mtD3cpv, or ADP-ATP exchange rates did not differ among cell types. ANT1-null fibroblasts were also resistant to H2O2-induced mitochondrial swelling. Permeabilized C2C12 myotubes with knocked-down ANT1 exhibited higher calcium uptake capacity and voltage-thresholds of mPT opening inferred from cytochrome c release, but intact cells showed no differences in calcimycin-induced onset of mPT, irrespective of energization and ANT1 expression, albeit the number of cells undergoing mPT increased less significantly upon chemically-induced hypoxia than control cells. We conclude that ANT1 confers sensitivity of the pore to the electrochemical gradient
Heart Rate Variability and Atria Function in Children at Late Follow-Up Evaluation After Atrioventricular Node Slow-Pathway Radiofrequency Ablation
This study was designed to assess the changes in the conductive system, autonomic dysfunction, and global and regional function of the atria and ventricles in children late after slow-pathway radiofrequency ablation (RFA). The study enrolled 22 children, who has successfully undergone RFA 2 to 5 years previously (RFA group) and 20 healthy children (control group). Electrophysiologic study was performed for the RFA group. Holter monitoring and echocardiography were performed for all the children. At a late follow-up assessment, the RFA children were free of paroxysms, whereas 8 of the 22 children (36%) reported transient palpitations. Both mean and maximal heart rates (HR) were significantly increased, whereas indices of HR variability (% of succesive normal sinus RR intervals exceeding 50 ms [pNN50], root mean square of the succesive normal sinus RR interval difference [rMSSD], high-frequency component [HFC]) were significantly decreased in the RFA group compared with preablation and control data. Left atrial (LA) and right atrial (RA) volumes were significantly higher, and atria deformation indices were significantly lower in the RFA group. Correlations were found between the mean HR and the volumes of LA (r = 0.477; p < 0.001) and RA (r = 0.512; p < 0.001). A negative correlation between the maximal LA volume and the longitudinal strain rate (SR) during relaxation (r = â0.476; p = 0.03) and a positive correlation between the minimal LA volume and both longitudinal SR (r = 0.361; p = 0.03) and strain (Δ) (r = 0.375; p = 0.024) during contraction were shown. These data suggest a possible link between atrial dysfunction and the hyperadrenergic state after RFA
TSPO ligand residence time influences human glioblastoma multiforme cell death/life balance
Abstract
Ligands addressed to the mitochondrial Translocator Protein (TSPO) have been suggested as cell death/life and steroidogenesis modulators. Thus, TSPO ligands have been proposed as drug candidates in several diseases; nevertheless, a correlation between their binding affinity and in vitro efficacy has not been demonstrated yet, questioning the specificity of the observed effects. Since drug-target residence time is an emerging parameter able to influence drug pharmacological features, herein, the interaction between TSPO and irDE-MPIGA, a covalent TSPO ligand, was investigated in order to explore TSPO control on death/life processes in a standardized glioblastoma cell setting. After 90 min irDE-MPIGA cell treatment, 25 nM ligand concentration saturated irreversibly all TSPO binding sites; after 24 h, TSPO de-novo synthesis occurred and about 40 % TSPO binding sites resulted covalently bound to irDE-MPIGA. During cell culture treatments, several dynamic events were observed: (a) early apoptotic markers appeared, such as mitochondrial membrane potential collapse (at 3 h) and externalization of phosphatidylserine (at 6 h); (b) cell viability was reduced (at 6 h), without cell cycle arrest. After digitonin-permeabilized cell suspension treatment, a modulation of mitochondrial permeability transition pore was evidenced. Similar effects were elicited by the reversible TSPO ligand PIGA only when applied at micromolar dose. Interestingly, after 6 h, irDE-MPIGA cell exposure restored cell survival parameters. These results highlighted the ligand-target residence time and the cellular setting are crucial parameters that should be taken into account to understand the drug binding affinity and efficacy correlation and, above all, to translate efficiently cellular drug responses from bench to bedside
The mitochondrial permeability transition pore in cell death: A promising drug binding bioarchitecture
Bioenergetic failure often features programmed cell death involved in some severe pathologies. When the cell is fated to die, the inner mitochondrial membrane becomes permeable to ions and solutes, due to the formation and opening of a channel known as mitochondrial permeability transition pore (mPTP). Up to now, the still-elusive mPTP structure and mechanism prevented any attempt to identify/design drugs to rule its formation and limit cell death. Latest advances, which strongly suggest that the F1FO-ATPase can coincide with the mPTP, open new perspectives in therapy. Compounds targeting and inhibiting cyclophilin D, a known mPTP promoter, could be exploited to block mPTP formation. Moreover, if the mPTP-F1FO-ATPase connection will be consolidated, selected F1FO-ATPase inhibitors could represent novel therapeutic options to attenuate mPTP-related diseases by directly acting on mPTP molecular mechanism. This intriguing perspective, which raises new hopes to counteract mPTP-related diseases, stimulates further studies to clarify the mPTP architecture and mechanism
Shedding light on the mitochondrial permeability transition
The mitochondrial permeability transition is an increase of permeability of the inner mitochondrial membrane to ions and solutes with an exclusion size of about 1500 Da. It is generally accepted that the permeability transition is due to opening of a high-conductance channel, the permeability transition pore. Although the molecular nature of the permeability transition pore remains undefined, a great deal is known about its regulation and role in pathophysiology. This review specifically covers the characterization of the permeability transition pore by chemical modification of specific residues through photoirradiation of
mitochondria after treatment with porphyrins. The review also illustrates the basic principles of the photodynamic effect and the mechanisms of phototoxicity and discusses the unique properties of singlet oxygen generated by specific porphyrins in discrete mitochondrial domains. These experiments provided remarkable information on the role, interactions and topology of His and Cys residues in permeability transition pore modulation and defined an important role for the outer membrane 18 kDa translocator
protein (formerly known as the peripheral benzodiazepine receptor) in regulation of the permeability transition