200 research outputs found
The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation
Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors. © 2013 Sun et al
Myocardial changes in incident haemodialysis patients over 6-months:an observational cardiac magnetic resonance imaging study
Patients commencing on haemodialysis (HD) have an increased risk of cardiovascular events in the first year after starting HD compared to those patients established on HD longer. Left ventricular (LV) hypertrophy and abnormal myocardial strain predict mortality. There may be changes in the myocardium of incident HD patients over a 6-month period of HD which may explain changes in cardiovascular risk. We used CMR to consider changes in LV mass, myocardial strain and T1 mapping. We examined changes in pre-dialysis highly sensitive troponin T. 33 patients undergoing HD for <12 months were recruited. Participants underwent CMR at baseline and after 6-months of standard care. 6-months of HD was associated with reduction in LV mass index (Baseline: 78.8 g/m2 follow up: 69.9 g/m2, p = <0.001). LV global longitudinal strain also improved (Baseline: −17.9%, follow up: −21.6%, p = <0.001). Change in T1 time was not significant (Baseline septal T1 1277.4 ms, follow up 1271.5 p = 0.504). Highly sensitive troponin T was lower at follow up (Baseline 38.8 pg/L, follow up 30.8 pg/L p = 0.02). In incident HD patients, 6-months of HD was associated with improvements in LV mass, strain and troponin. These findings may reflect improvement in known cardiac tissue abnormalities found in patients over the first year of HD
Paternal and Maternal History of Myocardial Infarction and Cardiovascular Diseases Incidence in a Dutch Cohort of Middle-Aged Persons
Background - A positive parental history of myocardial infarction (MI) is an independent risk factor for cardiovascular diseases (CVD). However, different definitions of parental history have been used. We evaluated the impact of parental gender and age of onset of MI on CVD incidence. Methods - Baseline data were collected between 1993 and 1997 in 10¿524 respondents aged 40–65 years. CVD events were obtained from the National Hospital Discharge Register and Statistics Netherlands. We used proportional hazard models to calculate hazard ratios (HR) and 95% confidence intervals (CI) for CVD incidence and adjusted for lifestyle and biological risk factors. Results - At baseline, 36% had a parental history of MI. During 10-year follow-up, 914 CVD events occurred. The age and gender adjusted HR was 1.3 (95% CI 1.1–1.5) for those with a paternal MI, 1.5 (1.2–1.8) for those with a maternal MI and 1.6 (1.2–2.2) for those with both parents with an MI. With decreasing parental age of MI, HR increased from 1.2 (1.0–1.6) for age =70 years to 1.5 (1.2–1.8) for ag
A Functional Polymorphism in Renalase (Glu37Asp) Is Associated with Cardiac Hypertrophy, Dysfunction, and Ischemia: Data from the Heart and Soul Study
Renalase is a soluble enzyme that metabolizes circulating catecholamines. A common missense polymorphism in the flavin-adenine dinucleotide-binding domain of human renalase (Glu37Asp) has recently been described. The association of this polymorphism with cardiac structure, function, and ischemia has not previously been reported.We genotyped the rs2296545 single-nucleotide polymorphism (Glu37Asp) in 590 Caucasian individuals and performed resting and stress echocardiography. Logistic regression was used to examine the associations of the Glu37Asp polymorphism (C allele) with cardiac hypertrophy (LV mass>100 g/m2), systolic dysfunction (LVEF<50%), diastolic dysfunction, poor treadmill exercise capacity (METS<5) and inducible ischemia.Compared with the 406 participants who had GG or CG genotypes, the 184 participants with the CC genotype had increased odds of left ventricular hypertrophy (OR = 1.43; 95% CI 0.99-2.06), systolic dysfunction (OR = 1.72; 95% CI 1.01-2.94), diastolic dysfunction (OR = 1.75; 95% CI 1.05-2.93), poor exercise capacity (OR = 1.61; 95% CI 1.05-2.47), and inducible ischemia (OR = 1.49, 95% CI 0.99-2.24). The Glu37Asp (CC genotype) caused a 24-fold decrease in affinity for NADH and a 2.3-fold reduction in maximal renalase enzymatic activity.A functional missense polymorphism in renalase (Glu37Asp) is associated with cardiac hypertrophy, ventricular dysfunction, poor exercise capacity, and inducible ischemia in persons with stable coronary artery disease. Further studies investigating the therapeutic implications of this polymorphism should be considered
Role of Scrib and Dlg in anterior-posterior patterning of the follicular epithelium during Drosophila oogenesis
<p>Abstract</p> <p>Background</p> <p>Proper patterning of the follicle cell epithelium over the egg chamber is essential for the <it>Drosophila </it>egg development. Differentiation of the epithelium into several distinct cell types along the anterior-posterior axis requires coordinated activities of multiple signaling pathways. Previously, we reported that <it>lethal(2)giant larvae </it>(<it>lgl</it>), a <it>Drosophila </it>tumor suppressor gene, is required in the follicle cells for the posterior follicle cell (PFC) fate induction at mid-oogenesis. Here we explore the role of another two tumor suppressor genes, <it>scribble </it>(<it>scrib</it>) and <it>discs large </it>(<it>dlg</it>), in the epithelial patterning.</p> <p>Results</p> <p>We found that removal of <it>scrib </it>or <it>dlg </it>function from the follicle cells at posterior terminal of the egg chamber causes a complete loss of the PFC fate. Aberrant specification and differentiation of the PFCs in the mosaic clones can be ascribed to defects in coordinated activation of the EGFR, JAK and Notch signaling pathways in the multilayered cells. Meanwhile, the clonal analysis revealed that loss-of-function mutations in <it>scrib/dlg </it>at the anterior domains result in a partially penetrant phenotype of defective induction of the stretched and centripetal cell fate, whereas specification of the border cell fate can still occur in the most anterior region of the mutant clones. Further, we showed that <it>scrib </it>genetically interacts with <it>dlg </it>in regulating posterior patterning of the epithelium.</p> <p>Conclusion</p> <p>In this study we provide evidence that <it>scrib </it>and <it>dlg </it>function differentially in anterior and posterior patterning of the follicular epithelium at oogenesis. Further genetic analysis indicates that <it>scrib </it>and <it>dlg </it>act in a common pathway to regulate PFC fate induction. This study may open another window for elucidating role of <it>scrib/dlg </it>in controlling epithelial polarity and cell proliferation during development.</p
Electrocardiographic Left Ventricular Hypertrophy and Outcome in Hemodialysis Patients
BACKGROUND AND AIMS: Electrocardiography (ECG) is the most widely used initial screening test for the assessment of left ventricular hypertrophy (LVH), an independent predictor of cardiovascular mortality in patients with end-stage renal disease (ESRD). However, traditional ECG criteria based only on voltage to detect LVH have limited clinical utility for the detection of LVH because of their poor sensitivity. METHODS: This prospective observational study was undertaken to compare the prognostic significance of commonly used ECG criteria for LVH, namely Sokolow-Lyon voltage (SV) or voltage-duration product (SP) and Cornell voltage (CV) or voltage-duration product (CP) criteria, and to investigate the association between echocardiographic LV mass index (LVMI) and ECG-LVH criteria in ESRD patients, who consecutively started maintenance hemodialysis (HD) between January 2006 and December 2008. RESULTS: A total of 317 patients, who underwent both ECG and echocardiography, were included. Compared to SV and CV criteria, SP and CP criteria, respectively, correlated more closely with LVMI. In addition, CP criteria provided the highest positive predictive value for echocardiographic LVH. The 5-year cardiovascular survival rates were significantly lower in patients with ECG-LVH by each criterion. In multivariate analyses, echocardiographic LVH [adjusted hazard ratio (HR): 11.71; 95% confidence interval (CI): 1.57-87.18; P = 0.016] and ECG-LVH by SP (HR: 3.43; 95% CI: 1.32-8.92; P = 0.011) and CP (HR: 3.07; 95% CI: 1.16-8.11; P = 0.024) criteria, but not SV and CV criteria, were significantly associated with cardiovascular mortality. CONCLUSIONS: The product of QRS voltage and duration is helpful in identifying the presence of LVH and predicting cardiovascular mortality in incident HD patients
Familiarization: A theory of repetition suppression predicts interference between overlapping cortical representations
Repetition suppression refers to a reduction in the cortical response to a novel stimulus that
results from repeated presentation of the stimulus. We demonstrate repetition suppression
in a well established computational model of cortical plasticity, according to which the relative
strengths of lateral inhibitory interactions are modified by Hebbian learning. We present
the model as an extension to the traditional account of repetition suppression offered by
sharpening theory, which emphasises the contribution of afferent plasticity, by instead
attributing the effect primarily to plasticity of intra-cortical circuitry. In support, repetition suppression
is shown to emerge in simulations with plasticity enabled only in intra-cortical connections.
We show in simulation how an extended ‘inhibitory sharpening theory’ can explain
the disruption of repetition suppression reported in studies that include an intermediate
phase of exposure to additional novel stimuli composed of features similar to those of the
original stimulus. The model suggests a re-interpretation of repetition suppression as a manifestation
of the process by which an initially distributed representation of a novel object
becomes a more localist representation. Thus, inhibitory sharpening may constitute a more
general process by which representation emerges from cortical re-organisation
Optimization of interneuron function by direct coupling of cell migration and axonal targeting
Neural circuit assembly relies on the precise synchronization of developmental processes, such as cell migration and axon targeting, but the cell-autonomous mechanisms coordinating these events remain largely unknown. Here we found that different classes of interneurons use distinct routes of migration to reach the embryonic cerebral cortex. Somatostatin-expressing interneurons that migrate through the marginal zone develop into Martinotti cells, one of the most distinctive classes of cortical interneurons. For these cells, migration through the marginal zone is linked to the development of their characteristic layer 1 axonal arborization. Altering the normal migratory route of Martinotti cells by conditional deletion of Mafb—a gene that is preferentially expressed by these cells—cell-autonomously disrupts axonal development and impairs the function of these cells in vivo. Our results suggest that migration and axon targeting programs are coupled to optimize the assembly of inhibitory circuits in the cerebral cortex
- …