1,896 research outputs found

    Application of magnetically induced hyperthermia on the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections

    Full text link
    Magnetic hyperthermia is currently an EU-approved clinical therapy against tumor cells that uses magnetic nanoparticles under a time varying magnetic field (TVMF). The same basic principle seems promising against trypanosomatids causing Chagas disease and sleeping sickness, since therapeutic drugs available display severe side effects and drug-resistant strains. However, no applications of this strategy against protozoan-induced diseases have been reported so far. In the present study, Crithidia fasciculata, a widely used model for therapeutic strategies against pathogenic trypanosomatids, was targeted with Fe_{3}O_{4} magnetic nanoparticles (MNPs) in order to remotely provoke cell death using TVMFs. The MNPs with average sizes of d approx. 30 nm were synthesized using a precipitation of FeSO_{4}4 in basic medium. The MNPs were added to Crithidia fasciculata choanomastigotes in exponential phase and incubated overnight. The amount of uploaded MNPs per cell was determined by magnetic measurements. Cell viability using the MTT colorimetric assay and flow cytometry showed that the MNPs were incorporated by the cells with no noticeable cell-toxicity effects. When a TVMF (f = 249 kHz, H = 13 kA/m) was applied to MNP-bearing cells, massive cell death was induced via a non-apoptotic mechanism. No effects were observed by applying a TVMF on control (without loaded MNPs) cells. No macroscopic rise in temperature was observed in the extracellular medium during the experiments. Scanning Electron Microscopy showed morphological changes after TVMF experiments. These data indicate (as a proof of principle) that intracellular hyperthermia is a suitable technology to induce the specific death of protozoan parasites bearing MNPs. These findings expand the possibilities for new therapeutic strategies that combat parasitic infections.Comment: 9 pages, four supplementary video file

    An Observational Study of Nurse Staffing Ratios and Hospital Readmission among Children Admitted for Common Conditions

    Get PDF
    Background: Hospital patient-to-nurse staffing ratios are associated with quality outcomes in adult patient populations but little is known about how these factors affect paediatric care. We examined the relationship between staffing ratios and all-cause readmission (within 14 days, 15–30 days) among children admitted for common medical and surgical conditions. Methods: We conducted an observational cross-sectional study of readmissions of children in 225 hospitals by linking nurse surveys, inpatient discharge data and information from the American Hospital Association Annual Survey. Registered Nurses (N=14 194) providing direct patient care in study hospitals (N=225) and children hospitalised for common conditions (N=90 459) were included. Results: Each one patient increase in a hospital\u27s average paediatric staffing ratio increased a medical child\u27s odds of readmission within 15–30 days by a factor of 1.11, or by 11% (95% CI 1.02 to 1.20) and a surgical child\u27s likelihood of readmission within 15–30 days by a factor of 1.48, or by 48% (95% CI 1.27 to 1.73). Children treated in hospitals with paediatric staffing ratios of 1 : 4 or less were significantly less likely to be readmitted within 15–30 days. There were no significant effects of nurse staffing ratios on readmissions within 14 days. Discussion: Children with common conditions treated in hospitals in which nurses care for fewer patients each are significantly less likely to experience readmission between 15 and 30 days after discharge. Lower patient-to-nurse ratios hold promise for preventing unnecessary hospital readmissions for children through more effective predischarge monitoring of patient conditions, improved discharge preparation and enhanced quality improvement success

    Faraday waves on a viscoelastic liquid

    Full text link
    We investigate Faraday waves on a viscoelastic liquid. Onset measurements and a nonlinear phase diagram for the selected patterns are presented. By virtue of the elasticity of the material a surface resonance synchronous to the external drive competes with the usual subharmonic Faraday instability. Close to the bicriticality the nonlinear wave interaction gives rise to a variety of novel surface states: Localised patches of hexagons, hexagonal superlattices, coexistence of hexagons and lines. Theoretical stability calculations and qualitative resonance arguments support the experimental observations.Comment: 4 pages, 4figure

    "It All Ended in an Unsporting Way": Serbian Football and the Disintegration of Yugoslavia, 1989-2006

    Get PDF
    Part of a wider examination into football during the collapse of Eastern European Communism between 1989 and 1991, this article studies the interplay between Serbian football and politics during the period of Yugoslavia's demise. Research utilizing interviews with individuals directly involved in the Serbian game, in conjunction with contemporary Yugoslav media sources, indicates that football played an important proactive role in the revival of Serbian nationalism. At the same time the Yugoslav conflict, twinned with a complex transition to a market economy, had disastrous consequences for football throughout the territories of the former Yugoslavia. In the years following the hostilities the Serbian game has suffered decline, major financial hardship and continuing terrace violence, resulting in widespread nostalgia for the pre-conflict era

    Pattern formation in 2-frequency forced parametric waves

    Full text link
    We present an experimental investigation of superlattice patterns generated on the surface of a fluid via parametric forcing with 2 commensurate frequencies. The spatio-temporal behavior of 4 qualitatively different types of superlattice patterns is described in detail. These states are generated via a number of different 3--wave resonant interactions. They occur either as symmetry--breaking bifurcations of hexagonal patterns composed of a single unstable mode or via nonlinear interactions between the two primary unstable modes generated by the two forcing frequencies. A coherent picture of these states together with the phase space in which they appear is presented. In addition, we describe a number of new superlattice states generated by 4--wave interactions that arise when symmetry constraints rule out 3--wave resonances.Comment: The paper contains 34 pages and 53 figures and provides an extensive review of both the theoretical and experimental work peformed in this syste

    Simple and efficient synthesis of 5′ pre-adenylated DNA using thermostable RNA ligase

    Get PDF
    We report a simple method of enzymatic synthesis of pre-adenylated DNA linkers/adapters for next-generation sequencing using thermostable RNA ligase from Methanobacterium thermoautotrophicum (MthRnl). Using RNA ligase for the reaction instead of the existing chemical or T4 DNA ligase-based methods allows quantitative conversion of 5′-phosphorylated single-stranded DNA (ssDNA) to the adenylated form. The MthRnl adenylation reaction is specific for ATP and either ssDNA or RNA. In the presence of Mg+2, the reaction has a pH optimum of 6.0–6.5. Unlike reactions that use T4 DNA ligase, this protocol does not require synthesis of a template strand for adenylation. The high yield of the reaction simplifies isolation and purification of the adenylated product. Conducting the adenylation reaction at the elevated temperature (65°C) reduces structural constraints, while increased ATP concentrations allow quantitative adenylation of DNA with a 3′-unprotected end

    ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument

    Full text link
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the baryon acoustic oscillations technique. The spectra of 35 million galaxies and quasars over 14,000 square degrees will be measured during a 5-year survey. A new prime focus corrector for the Mayall telescope at Kitt Peak National Observatory will deliver light to 5,000 individually targeted fiber-fed robotic positioners. The fibers in turn feed ten broadband multi-object spectrographs. We describe the ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall telescope from August 14 to September 30, 2016. ProtoDESI was an on-sky technology demonstration with the goal to reduce technical risks associated with aligning optical fibers with targets using robotic fiber positioners and maintaining the stability required to operate DESI. The ProtoDESI prime focus instrument, consisting of three fiber positioners, illuminated fiducials, and a guide camera, was installed behind the existing Mosaic corrector on the Mayall telescope. A Fiber View Camera was mounted in the Cassegrain cage of the telescope and provided feedback metrology for positioning the fibers. ProtoDESI also provided a platform for early integration of hardware with the DESI Instrument Control System that controls the subsystems, provides communication with the Telescope Control System, and collects instrument telemetry data. Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a Fiber Photometry Camera mounted on the prime focus instrument. ProtoDESI was successful in acquiring targets with the robotically positioned fibers and demonstrated that the DESI guiding requirements can be met.Comment: Accepted versio

    Isodicentric Y Chromosomes and Sex Disorders as Byproducts of Homologous Recombination that Maintains Palindromes

    Get PDF
    Massive palindromes in the human Y chromosome harbor mirror-image gene pairs essential for spermatogenesis. During evolution, these gene pairs have been maintained by intrapalindrome, arm-to-arm recombination. The mechanism of intrapalindrome recombination and risk of harmful effects are unknown. We report 51 patients with isodicentric Y (idicY) chromosomes formed by homologous crossing over between opposing arms of palindromes on sister chromatids. These ectopic recombination events occur at nearly all Y-linked palindromes. Based on our findings, we propose that intrapalindrome sequence identity is maintained via noncrossover pathways of homologous recombination. DNA double-strand breaks that initiate these pathways can be alternatively resolved by crossing over between sister chromatids to form idicY chromosomes, with clinical consequences ranging from spermatogenic failure to sex reversal and Turner syndrome. Our observations imply that crossover and noncrossover pathways are active in nearly all Y-linked palindromes, exposing an Achilles' heel in the mechanism that preserves palindrome-borne genes.National Institutes of Health (U.S.)Howard Hughes Medical InstituteNetherlands Organization for Scientific ResearchUniversity of Amsterdam. Academic Medical CenterBoehringer Ingelheim (Fellowship

    Rapid sympathetic cooling to Fermi degeneracy on a chip

    Full text link
    Neutral fermions present new opportunities for testing many-body condensed matter systems, realizing precision atom interferometry, producing ultra-cold molecules, and investigating fundamental forces. However, since their first observation, quantum degenerate Fermi gases (DFGs) have continued to be challenging to produce, and have been realized in only a handful of laboratories. In this Letter, we report the production of a DFG using a simple apparatus based on a microfabricated magnetic trap. Similar approaches applied to Bose-Einstein Condensation (BEC) of 87Rb have accelerated evaporative cooling and eliminated the need for multiple vacuum chambers. We demonstrate sympathetic cooling for the first time in a microtrap, and cool 40K to Fermi degeneracy in just six seconds -- faster than has been possible in conventional magnetic traps. To understand our sympathetic cooling trajectory, we measure the temperature dependence of the 40K-87Rb cross-section and observe its Ramsauer-Townsend reduction.Comment: 5 pages, 4 figures (v3: new collision data, improved atom number calibration, revised text, improved figures.
    corecore