6 research outputs found
An Integrated Quantitative Assessment of Urban Water Security of a Megacity in the Global South
Water security, the access to adequate amounts of water of adequate quality, is and will remain a hugely important issue over the next decades as climate change and related hazards, food insecurity, and social instability will exacerbate insecurities. Despite attempts made by researchers and water professionals to study different dimensions of water security in urban areas, there is still an absence of comprehensive water security measurement tools. This study aims to untangle the interrelationship between biophysical and socio-economic dimensions that shape water security in a megacity in the Global South—Kolkata, India. It provides an interdisciplinary understanding of urban water security by extracting and integrating relevant empirical knowledge on urban water issues in the city from physical, environmental, and social sciences approaches. To do so we use intersectional perspectives to analyze urban water security at a micro (respondent) level and associated challenges across and between areas within the city. The study concludes with the recommendation that future studies should make use of comprehensive and inclusive approaches so we can ensure that we leave no one behind
Assessment of Environmental Water Security of an Asian Deltaic Megacity and Its Peri-Urban Wetland Areas
Achieving urban water security requires sustaining the trade-offs between the exploitation of water/environmental resources and ecosystem services. This achievement not only reduces the pollution and contamination in the environment, level of water stress, but also secures good ambient water quality and future for people’s well-being and livelihoods. Changes in land use and land cover and growth of impervious structures can immediately generate severe ecological and social issues and increase the level of natural or manmade risks, affecting the condition of ecosystem services within and in the vicinity of an urban region. As a result of these transformations and further exploitation, due to the growing anthropogenic pressure, surface water and groundwater quality can be deteriorated compared to ambient water quality standards (for both chemical and biological pollutants). Based on land use and land cover (LULC) data retrieved from remote sensing interpretation, we computed the changes of the ecosystem service values (ESV) associated with the LULC dynamics, water quality and, finally, urban water security during the pre- and post-monsoon periods of 2009, 2014 and 2019 in Kolkata, an Asian deltaic megacity, and its peri-urban wetlands named East Kolkata Wetlands (EKW). The area under wetlands reduced comprehensively in 2009–2019 due to the conversion of wetlands into various other classes such as urban settlement, etc. The quality of surface water bodies (such as rivers, lakes, canals and inland wetlands) deteriorated. The groundwater quality is still under control, but the presence of arsenic, manganese and other metals are a clear indication of urban expansion and related activities in the area. As a result, there was a change in the ESV during this timeframe. In the pre-monsoon period, there was an increase in total ESV from US53.36 million and US67.42 million in 2009 to US61.89 million in 2014 and 2019, respectively. These changes can be attributed to the peri-urban wetlands and the benefits or services arising out of them that contribute more than 50% of the total ESV. This study found that the area under wetlands has reduced comprehensively in the past 10 years due to the conversion of wetlands for various other uses such as urban expansion of the Kolkata City, but still, this peri-urban wetland supports the urban water security by providing sufficient ecosystem services. In conclusion, the transformation in extent of the water-related ecosystem is a crucial indicator of urban water security, which also measures the quantity of water contained in various water-related ecosystems. Quantitative analysis of the LULC change, hence, is important for studying the corresponding impact on the ecosystem service value (ESV) and water quality that helps in decision-making in securing urban water future and ecosystem conservation
Mercury isotopes of atmospheric particle bound mercury for source apportionment study in urban Kolkata, India
Abstract The particle bound mercury (PBM) in urban-industrial areas is mainly of anthropogenic origin, and is derived from two principal sources: Hg bound to particulate matter directly emitted by industries and power generation plants, and adsorption of gaseous elemental mercury (GEM) and gaseous oxidized mercury (GOM) on air particulates from gas or aqueous phases. Here, we measured the Hg isotope composition of PBM in PM10 samples collected from three locations, a traffic junction, a waste incineration site and an industrial site in Kolkata, the largest metropolis in Eastern India. Sampling was carried out in winter and monsoon seasons between 2013–2015. The objective was to understand whether the isotope composition of the PBM represents source composition. The PBM collected from the waste burning site showed little mass independent fractionation (MIF) (Δ199Hg = +0.12 to -0.11‰), similar to the signature in liquid Hg and Hg ores around the world with no seasonal variations. Samples from the industrial site showed mostly negative MDF and MIF (δ202Hg = -1.34 to -3.48 ‰ and Δ199Hg = +0.01 to -0.31‰). The MDF is consistent with PBM generated by coal combustion however, the MIF is 0.15‰ more negative compared to the Hg isotope ratios in Indian coals. The traffic junction PBM is probably not produced in situ, but has travelled some distances from nearby industrial sources. The longer residence time of this PBM in the atmosphere has resulted in-aerosol aqueous photoreduction. Thus, the MIF displays a larger range (Δ199Hg = +0.33 to -0.30‰) compared to the signature from the other sites and with more positive values in the humid monsoon season. Different Hg isotopic signature of PBM in the three different sampling locations within the same city indicates that both source and post emission atmospheric transformations play important roles in determining isotopic signature of PBM
Trace element composition of PM2.5 and PM10 from Kolkata - a heavily polluted Indian metropolis
National Research Foundation (NRF) Singapore; Ministry of Education, Singapor