54 research outputs found

    Community-based monitoring of vector control interventions impact upon mosquito population dynamics in rural Zambia

    Get PDF
    Over the last decade, the malaria burden has reduced drastically across many parts of sub-Saharan Africa. This is mainly due to effective implementation of integrated malaria control programmes that include large scale application of vector control in the form of long-lasting insecticidal nest (LLINs) and indoor residual spraying (IRS), both of which target the most efficient human-seeking malaria vector species. However, in spite of these efforts, malaria has yet to be eliminated from most of Africa. However, recent increases in the physiological resistance of vector populations, especially to the pyrethroids that remain the only active ingredients currently used on nets threaten these achievements. Furthermore, various forms of behavioural resilience and resistance exhibited by some vector species to LLIN and IRS delivery formats for insecticides respectively limit and undermine these valuable impacts upon malaria transmission. To monitor the impact that LLINs and IRS have on vector population dynamics and malaria transmission, more effective, practical and affordable entomological surveillance systems are required. Currently, surveillance of mosquito populations are conducted by the centralized specialist teams with limited personnel, resources and geographic outreach. None of these existing systems can adequately monitor vector population dynamics longitudinally across the vastness of entire countries. The overall goal of the study was to demonstrate how a community-based surveillance system can be applied to longitudinally monitor vector population dynamics and assess the impact that LLINs and IRS have on malaria transmission in rural Zambia. To achieve this overall goal, the following specific objectives were addressed: (1) To evaluate the efficacy of exposure-free mosquito trapping methods for measuring malaria vector density, as alternatives to human landing catch; (2) To assess the cost-effectiveness using a community-based (CB) mosquito trapping scheme for monitoring vector population dynamics; (3) To determine the extent to which a community-based mosquito trapping scheme captures trends in epidemiological indicators of malaria infection risk; (4) To determine the impact of indoor residual spraying with different classes of insecticides on malaria infection burden and vector abundances in an area of high coverage with insecticide treated nets using a community-based platform. To address objective 1, a 3 x 3 Latin square method was used to evaluate the sensitivity of the Center for Disease and Control and Prevention miniature light traps (LT), the Ifakara tent trap (ITT), window exit traps (WET) and the resting boxes (RB) using the golden standard human land catch (HLC) as the reference method. The mean catches of HLC indoor, HLC outdoor, CDC-LT, ITT, WET, RB indoor and RB outdoor, were 1.687, 1.004, 3.267, 0.088, 0.004, 0.000 and 0.008 for Anopheles quadriannulatus Theobald respectively, and 7.287, 6.784, 10.958, 5.875, 0.296, 0.158 and 0.458, for An. funestus Giles, respectively. The LT (Relative rate (RR) [95% Confidence Interval] = 1.532 [1.441, 1.628]

    Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa.

    Get PDF
    BACKGROUND: Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are highly effective tools for controlling malaria transmission in Africa because the most important vectors, from the Anopheles gambiae complex and the A. funestus group, usually prefer biting humans indoors at night. METHODS: Matched surveys of mosquito and human behaviour from six rural sites in Burkina Faso, Tanzania, Zambia, and Kenya, with ITN use ranging from 0.2% to 82.5%, were used to calculate the proportion of human exposure to An. gambiae sensu lato and An. funestus s.l. that occurs indoors (Ï€i), as an indicator of the upper limit of personal protection that indoor vector control measures can provide. This quantity was also estimated through use of a simplified binary analysis (Ï€(i)(B)) so that the proportions of mosquitoes caught indoors (Pi), and between the first and last hours at which most people are indoors (Pfl) could also be calculated as underlying indicators of feeding by mosquitoes indoors or at night, respectively. RESULTS: The vast majority of human exposure to Anopheles bites occurred indoors (Ï€(i)(B)= 0.79-1.00). Neither An. gambiae s.l. nor An. funestus s.l. strongly preferred feeding indoors (P(i) = 0.40-0.63 and 0.22-0.69, respectively), but they overwhelmingly preferred feeding at times when most humans were indoors (P(fl) = 0.78-1.00 and 0.86-1.00, respectively). CONCLUSIONS: These quantitative summaries of behavioural interactions between humans and mosquitoes constitute a remarkably consistent benchmark with which future observations of vector behaviour can be compared. Longitudinal monitoring of these quantities is vital to evaluate the effectiveness of ITNs and IRS and the need for complementary measures that target vectors outdoors

    A cost-effective, community-based, mosquito-trapping scheme that captures spatial and temporal heterogeneities of malaria transmission in rural Zambia

    Get PDF
    Background Monitoring mosquito population dynamics is essential to guide selection and evaluation of malaria vector control interventions but is typically implemented by mobile, centrally-managed teams who can only visit a limited number of locations frequently enough to capture longitudinal trends. Community-based (CB) mosquito trapping schemes for parallel, continuous monitoring of multiple locations are therefore required that are practical, affordable, effective, and reliable. Methods A CB surveillance scheme, with a monthly sampling and reporting cycle for capturing malaria vectors, using Centers for Disease Control and Prevention light traps (LT) and Ifakara Tent Traps (ITT), were conducted by trained community health workers (CHW) in 14 clusters of households immediately surrounding health facilities in rural south-east Zambia. At the end of the study, a controlled quality assurance (QA) survey was conducted by a centrally supervised expert team using human landing catch (HLC), LT and ITT to evaluate accuracy of the CB trapping data. Active surveillance of malaria parasite infection rates amongst humans was conducted by CHWs in the same clusters to determine the epidemiological relevance of these CB entomological surveys. Results CB-LT and CB-ITT exhibited relative sampling efficiencies of 50 and 7%, respectively, compared with QA surveys using the same traps. However, cost per sampling night was lowest for CB-LT (13.6),followedcloselybyCB−ITT(13.6), followed closely by CB-ITT (18.0), both of which were far less expensive than any QA survey (HLC: 138,LT:138, LT: 289, ITT: 269).CostperspecimenofAnophelesfunestuscapturedwaslowestforCB−LT(269). Cost per specimen of Anopheles funestus captured was lowest for CB-LT (5.3), followed by potentially hazardous QA-HLC (10.5)andthenCB−ITT(10.5) and then CB-ITT (28.0), all of which were far more cost-effective than QA-LT (141)andQA−ITT(141) and QA-ITT (168). Time-trends of malaria diagnostic positivity (DP) followed those of An. funestus density with a one-month lag and the wide range of mean DP across clusters was closely associated with mean densities of An. funestus caught by CB-LT (P < 0.001). Conclusions CB trapping schemes appear to be far more affordable, epidemiologically relevant and cost-effective than centrally supervised trapping schemes and may well be applicable to enhance intervention trials and even enable routine programmatic monitoring of vector population dynamics on unprecedented national scales

    Monitoring, Characterization and Control of Chronic, Symptomatic Malaria Infections in Rural Zambia through Monthly Household Visits by Paid Community Health Workers.

    Get PDF
    Active, population-wide mass screening and treatment (MSAT) for chronic Plasmodium falciparum carriage to eliminate infectious reservoirs of malaria transmission have proven difficult to apply on large national scales through trained clinicians from central health authorities.Methodology: Fourteen population clusters of approximately 1,000 residents centred around health facilities (HF) in two rural Zambian districts were each provided with three modestly remunerated community health workers (CHWs) conducting active monthly household visits to screen and treat all consenting residents for malaria infection with rapid diagnostic tests (RDT). Both CHWs and HFs also conducted passive case detection among residents who self-reported for screening and treatment. Diagnostic positivity was higher among symptomatic patients self-reporting to CHWs (42.5%) and HFs (24%) than actively screened residents (20.3%), but spatial and temporal variations of diagnostic positivity were highly consistent across all three systems. However, most malaria infections (55.6%) were identified through active home visits by CHWs rather than self-reporting to CHWs or HFs. Most (62%) malaria infections detected actively by CHWs reported one or more symptoms of illness. Most reports of fever and vomiting, plus more than a quarter of history of fever, headache and diarrhoea, were attributable to malaria infection. The minority of residents who participated >12 times had lower rates of malaria infection and associated symptoms in later contacts but most residents were tested <4 times and high malaria diagnostic positivity (32%), as well as incidence (1.46 detected infections per person per year) persisted in the population. Per capita cost for active service delivery by CHWs was US5.14butthiswouldrisetoUS5.14 but this would rise to US10.68 with full community compliance with monthly testing at current levels of transmission, and US$6.25 if pre-elimination transmission levels and negligible treatment costs were achieved. While monthly active home visits by CHWs equipped with RDTs were insufficient to eliminate the human infection reservoir in this typical African setting, despite reasonably high LLIN/IRS coverage. However, dramatic impact upon infection and morbidity burden might be attainable and cost-effective if community participation in regular testing can be improved and the substantial, but not necessarily prohibitive, costs are affordable to national programmes

    Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa

    Get PDF
    Background Insecticide-treated nets (ITNs) and indoor residual spraying (IRS) are highly effective tools for controlling malaria transmission in Africa because the most important vectors, from the Anopheles gambiae complex and the A. funestus group, usually prefer biting humans indoors at night. Methods Matched surveys of mosquito and human behaviour from six rural sites in Burkina Faso, Tanzania, Zambia, and Kenya, with ITN use ranging from 0.2% to 82.5%, were used to calculate the proportion of human exposure to An. gambiae sensu lato and An. funestus s.l. that occurs indoors (Ï€i), as an indicator of the upper limit of personal protection that indoor vector control measures can provide. This quantity was also estimated through use of a simplified binary analysis (Ï€iB) so that the proportions of mosquitoes caught indoors (Pi), and between the first and last hours at which most people are indoors (Pfl) could also be calculated as underlying indicators of feeding by mosquitoes indoors or at night, respectively. Results The vast majority of human exposure to Anopheles bites occurred indoors (Ï€iB = 0.79-1.00). Neither An. gambiae s.l. nor An. funestus s.l. strongly preferred feeding indoors (Pi = 0.40-0.63 and 0.22-0.69, respectively), but they overwhelmingly preferred feeding at times when most humans were indoors (Pfl = 0.78-1.00 and 0.86-1.00, respectively). Conclusions These quantitative summaries of behavioural interactions between humans and mosquitoes constitute a remarkably consistent benchmark with which future observations of vector behaviour can be compared. Longitudinal monitoring of these quantities is vital to evaluate the effectiveness of ITNs and IRS and the need for complementary measures that target vectors outdoor

    Incremental impact upon malaria transmission of supplementing pyrethroid-impregnated long-lasting insecticidal nets with indoor residual spraying using pyrethroids or the organophosphate, pirimiphos methyl

    Get PDF
    Background Long-lasting, insecticidal nets (LLINs) and indoor residual spraying (IRS) are the most widely accepted and applied malaria vector control methods. However, evidence that incremental impact is achieved when they are combined remains limited and inconsistent. Methods Fourteen population clusters of approximately 1000 residents each in Zambia’s Luangwa and Nyimba districts, which had high pre-existing usage rates (81.7 %) of pyrethroid-impregnated LLINs were quasi-randomly assigned to receive IRS with either of two pyrethroids, namely deltamethrin [Wetable granules (WG)] and lambdacyhalothrin [capsule suspension (CS)], with an emulsifiable concentrate (EC) or CS formulation of the organophosphate pirimiphos methyl (PM), or with no supplementary vector control measure. Diagnostic positivity of patients tested for malaria by community health workers in these clusters was surveyed longitudinally over pre- and post-treatment periods spanning 29 months, over which the treatments were allocated and re-allocated in advance of three sequential rainy seasons. Results Supplementation of LLINs with PM CS offered the greatest initial level of protection against malaria in the first 3 months of application (incremental protective efficacy (IPE) [95 % confidence interval (CI)] = 0.63 [CI 0.57, 0.69], P < 0.001), followed by lambdacyhalothrin (IPE [95 % CI] = 0.31 [0.10, 0.47], P = 0.006) and PM EC (IPE, 0.23 [CI 0.15, 0.31], P < 0.001) and then by deltamethrin (IPE [95 % CI] = 0.19 [−0.01, 0.35], P = 0.064). Neither pyrethroid formulation provided protection beyond 3 months after spraying, but the protection provided by both PM formulations persisted undiminished for longer periods: 6 months for CS and 12 months for EC. The CS formulation of PM provided greater protection than the combined pyrethroid IRS formulations throughout its effective life IPE [95 % CI] = 0.79 [0.75, 0.83] over 6 months. The EC formulation of PM provided incremental protection for the first 3 months (IPE [95 % CI] = 0.23 [0.15, 0.31]) that was approximately equivalent to the two pyrethroid formulations (lambdacyhalothrin, IPE [95 % CI] = 0.31 [0.10, 0.47] and deltamethrin, IPE [95 % CI] = 0.19 [−0.01, 0.35]) but the additional protection provided by the former, apparently lasted an entire year. Conclusion Where universal coverage targets for LLIN utilization has been achieved, supplementing LLINs with IRS using pyrethroids may reduce malaria transmission below levels achieved by LLIN use alone, even in settings where pyrethroid resistance occurs in the vector population. However, far greater reduction of transmission can be achieved under such conditions by supplementing LLINs with IRS using non-pyrethroid insecticide classes, such as organophosphates, so this is a viable approach to mitigating and managing pyrethroid resistance

    Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South - East Zambia.

    Get PDF
    Sampling malaria vectors and measuring their biting density is of paramount importance for entomological surveys of malaria transmission. Human landing catch (HLC) has been traditionally regarded as a gold standard method for surveying human exposure to mosquito bites. However, due to the risk of human participant exposure to mosquito-borne parasites and viruses, a variety of alternative, exposure-free trapping methods were compared in lowland, south-east Zambia. Centres for Disease Control and Prevention miniature light trap (CDC-LT), Ifakara Tent Trap model C (ITT-C), resting boxes (RB) and window exit traps (WET) were all compared with HLC using a 3 × 3 Latin Squares design replicated in 4 blocks of 3 houses with long lasting insecticidal nets, half of which were also sprayed with a residual deltamethrin formulation, which was repeated for 10 rounds of 3 nights of rotation each during both the dry and wet seasons. The mean catches of HLC indoor, HLC outdoor, CDC-LT, ITT-C, WET, RB indoor and RB outdoor, were 1.687, 1.004, 3.267, 0.088, 0.004, 0.000 and 0.008 for Anopheles quadriannulatus Theobald respectively, and 7.287, 6.784, 10.958, 5.875, 0.296, 0.158 and 0.458, for An. funestus Giles, respectively. Indoor CDC-LT was more efficient in sampling An. quadriannulatus and An. funestus than HLC indoor (Relative rate [95% Confidence Interval] = 1.873 [1.653, 2.122] and 1.532 [1.441, 1.628], respectively, P < 0.001 for both). ITT-C was the only other alternative which had comparable sensitivity (RR = 0.821 [0.765, 0.881], P < 0.001), relative to HLC indoor other than CDC-LT for sampling An. funestus. While the two most sensitive exposure-free techniques primarily capture host-seeking mosquitoes, both have substantial disadvantages for routine community-based surveillance applications: the CDC-LT requires regular recharging of batteries while the bulkiness of ITT-C makes it difficult to move between sampling locations. RB placed indoors or outdoors and WET had consistently poor sensitivity so it may be useful to evaluate additional alternative methods, such as pyrethrum spray catches and back packer aspirators, for catching resting mosquitoes

    Eliminating Malaria Vectors.

    Get PDF
    Malaria vectors which predominantly feed indoors upon humans have been locally eliminated from several settings with insecticide treated nets (ITNs), indoor residual spraying or larval source management. Recent dramatic declines of An. gambiae in east Africa with imperfect ITN coverage suggest mosquito populations can rapidly collapse when forced below realistically achievable, non-zero thresholds of density and supporting resource availability. Here we explain why insecticide-based mosquito elimination strategies are feasible, desirable and can be extended to a wider variety of species by expanding the vector control arsenal to cover a broader spectrum of the resources they need to survive. The greatest advantage of eliminating mosquitoes, rather than merely controlling them, is that this precludes local selection for behavioural or physiological resistance traits. The greatest challenges are therefore to achieve high biological coverage of targeted resources rapidly enough to prevent local emergence of resistance and to then continually exclude, monitor for and respond to re-invasion from external populations
    • …
    corecore