1,738 research outputs found

    Bending of a cracked plate with arbitrary stress distribution across the thickness

    Get PDF
    Bending of cracked plate with arbitrary stress distribution across plate thicknes

    Stress analysis of cracks

    Get PDF
    Elastic stress analyses of cracked bodies represented by stress intensity factor method - fracture mechanic

    Crack-like imperfections in a spherical shell

    Get PDF
    Mathematical model for stress analysis of cracks in spherical shell

    Sudden bending of cracked laminates

    Get PDF
    A dynamic approximate laminated plate theory is developed with emphasis placed on obtaining effective solution for the crack configuration where the 1/square root of r stress singularity and the condition of plane strain are preserved. The radial distance r is measured from the crack edge. The results obtained show that the crack moment intensity tends to decrease as the crack length to laminate plate thickness is increased. Hence, a laminated plate has the desirable feature of stabilizing a through crack as it increases its length at constant load. Also, the level of the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers. The present theory, although approximate, is useful for analyzing laminate failure to crack propagation under dynamic load conditions

    Slow and fast motion of cracks in inelastic solids. Part 1: Slow growth of cracks in a rate sensitive tresca solid. Part 2: Dynamic crack represented by the Dugdale model

    Get PDF
    An extension is proposed of the classical theory of fracture to viscoelastic and elastic-plastic materials in which the plasticity effects are confined to a narrow band encompassing the crack front. It is suggested that the Griffith-Irwin criterion of fracture, which requires that the energy release rate computed for a given boundary value problem equals the critical threshold, ought to be replaced by a differential equation governing the slow growth of a crack prior to the onset of rapid propagation. A new term which enters the equation of motion in the dissipative media is proportional to the energy lost within the end sections of the crack, and thus reflects the extent of inelastic behavior of a solid. A concept of apparent surface energy is introduced to account for the geometry dependent and the rate dependent phenomena which influence toughness of an inelastic solid. Three hypotheses regarding the condition for fracture in the subcritical range of load are compared. These are: (1) constant fracture energy (Cherepanov), (2) constant opening displacement at instability (Morozov) and (3) final stretch criterion (Wnuk)

    Off-axis impact of unidirectional composites with cracks: Dynamic stress intensification

    Get PDF
    The dynamic response of unidirectional composites under off axis (angle loading) impact is analyzed by assuming that the composite contains an initial flaw in the matrix material. The analytical method utilizes Fourier transform for the space variable and Laplace transform for the time variable. The off axis impact is separated into two parts, one being symmetric and the other skew-symmetric with reference to the crack plane. Transient boundary conditions of normal and shear tractions are applied to a crack embedded in the matrix of the unidirectional composite. The two boundary conditions are solved independently and the results superimposed. Mathematically, these conditions reduce the problem to a system of dual integral equations which are solved in the Laplace transform plane for the transformation of the dynamic stress intensity factor. The time inversion is carried out numerically for various combinations of the material properties of the composite and the results are displayed graphically

    The use of eigenfunction expansions in the general solution of three-dimensional crack problems

    Get PDF
    Eigenfunction expansion technique for three dimensional stress and displacement expressions in series form for infinite solids weakened by plane of discontinuity or crac

    Sudden stretching of a four layered composite plate

    Get PDF
    An approximate theory of laminated plates is developed by assuming that the extensioral and thickness mode of vibration are coupled. The mixed boundary value crack problem of a four layered composite plate is solved. Dynamic stress intensity factors for a crack subjected to suddenly applied stress are found to vary as a function of time and depend on the material properties of the laminate. Stress intensification in the region near the crack front can be reduced by having the shear modulus of the inner layers to be larger than that of the outer layers

    Thermal stresses in a solid weakened by an external circular crack

    Get PDF
    Linear thermoelastic problems solved for thermal stress and displacement fields in elastic solids weakened by external circular cracks or plane of discontinuit
    corecore