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FOREWORD

The reseayrch results in this report on the sudden bending of a laminated
plate containing a through crack represent a portion of the work performed for
the NASA - Lewis Research Center inr Cleveland, Ohio for the period February 13,
1979 through February 12, 1980 under Grant NSG 3179 with the Institute of Frac-
ture and Solid Mechanics at Lehigh University. The Principal Investigator of
the project is Professor George C. Sih. The co-author, Dr, E. P. Chen, was a
faculty member at Lehigh Univer:ity and is now employed by the Sandia Laboratory
in New Mexico. The encouragement and helpful comments made by Dr. Christos C.

Chamis, the NASA Project Manager, are gratefully acknowledged.
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SUDDEN BENDING OF A CRACKED LAMINATE

by

G. C. Sih
Institute of Fracture and Solid Mechanics
Lehigh University
Bethlehem, Pennsylvania 18015
and
E. P, Chen*

Sandia Laboratories
Albuquerque, New Mexico 87115

ABSTRACT

4

A number of laminated plate theories have been developed in recent times to
analyze the static and dynamic response of composite laminates with or without
the presence of stress concentrators such as holes, cracks, etc. Many of the
theories tend to quickly become intractable when considering the determination
of the state of affairs near the singular crack edges that are present in the
laminate, particularly if the loading is time dependent. Additional uncertain-
ties arise due to the lack of information on the mechanical properties of the
interface through which load transfer takes place between the adjacent layers.
This paper focuses attention on the intensification of stresses near a through
crack in the laminate that suddenly undergoes bending. A dynamic plate theory
is developed to include many of the essential features of the problem such as
material nonhomogeneity in the thickness direction, realistic crack edge stress
singularity and distribution while the parameter dependence of various signifi-
cant quantities is also assessed. Of particular interest is the variation of

the dynamic stress intensity factor with time. Numerical results for different

*Dr. E. P. Chen was on the faculty at Lehigh University.
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geometric and material constants are displayed graphically to show how they can
affect the transfer of load to the vicinity of a through crack in the laminate

that undergoes sudden beniing.

INTRODUCTION

The damage of laminated composite materials is, to say the least, very com-
plex since it involves various modes of failure such as fiber breaking, matrix
cracking, interface delamination, etc. Analytical modeling would be beyond ap-
proach if all these failure modes were to be accounted for. The spirit of frac-
ture mechanics is to assume that a critical single flaw or damage zone exists
and can lead to instability in terms of load applied to the laminate. Damage
accumulated in the composite other than the dominant flaw may often be simulated
by changing some of the mechanical properties of the composite which are usually
the stiffness of the constituents, Although not all laminates can be identified
with a single characteristic damage state, the single-flaw fracture mechanics
approach will be taken in this analysis in order that a sensitivity study on the
physical parameters affecting laminate fracture can be made possible. One of
the main objectives of this investigation is to come forth with a feasible dy-
namic theory of the laminate plate for analyzing composite failure due to crack

propagation.

As a consequence of increased use of laminate composites in aircraft and
other high speed vehicles, the analysis of the fracture behavior of layered com-
posites has attracted the attention of a considerable number of investigators
[1,2]. A variety of diverse approaches has been proposed to analyze laminate
failure and a collection of papers on this subject can be found in [3]. The

role with which the interfaces play in transferring the load from one layer to

-2-




the next in the laminate was emphasized, Because of the difference in the ma-
terial properties of the adjacent layers, the stresses icrnss the interface ex-
perience steep gradients. Only recently, a comprehensive study was made on how
the conditions in the interface can influence composite failure [4]. Even though
the interface may be relatively thin when compared with other dimensions of the
composite, the resulting stresses can be sensitive to the material properties

of the interface depending on the Toading conditions. There exists no theory at
the present which can relate the strength cf a composite structure to the condi-
tions in the interface. This aspect of the problem is emphasized in this re-

port.

The aforementioned difficulties become even more overwhelming when the load-
ing is time dependent. There is :w need to emphasize the virtue for constructing
approximate dynamic theories fur laminate composites, particularly for handling
crack problems. In the case of bending loads, it is essential that the three
physical boundary conditions of bending moﬁent, twisting moment and transverse
shear stress be satisfied individually on the crack edge. Such a theory has
been developed by Mindlin [5] for a single layered plate made of isotropic and
homogeneous material and applied to solve a number of crack problems [6]. An
equally effective theory is described herein for the dynamic bending of laminate
plates. Each layer of the laminate assumes different elastic properties and
is attached to the next Tayer with continuous strains across the interface.

The problem of a through crack in a balanced symmetric laminate is solved for
a moment applied suddenly on the crack surface. Not only are the qualitative
features of the three-dimensional stress distribution preserved in the vicinity

of the crack front, but, perhaps more significantly, the dynamic stress intensity

Ny




factor, which is a quantitative measure of the load transmitted to the crack,
is determined in terms of the significant material and geometric parameters such

that an effective study sn laminate fracture can be made.

DYNAMIC THEORY OF LAMINATED PLATE

Without loss in generality, a four layered composite plate will be considefed

as shown in Figure 1, The two middle layers are made of a material with shear
modulus My Poisson's ratio V1 and mass density P while the two outer layers
have the properties s Vo and pp. A set of rectangular Cartesian coordinates

X, ¥ and z are attached to the mid-plane of the laminate such that the layer

"properties are symmetric with respect to the xy-plane with z being the thickness

coordinate. The total height of the laminate is h with each layer having the
same thickness h/4. The outer edges of the Jaminate are sufficiently far away

from the crack so that their influences can be neglected.

Basic assumptions and relations. The layers of the laminate in the thickness
possess different material properties Mys Vj and Py (3 = 1,2) such that (u],
vyspq) prevails in the range 0<|z[<h/4 and (u5,vp,p,) applies to h/4<|z|<h/2,

The surfaces of the laminate are free from tangential tractions

S & vt



Tz ¥ Ty 0 for z = :h/2 (1)
but may be subjected to normal pressures 9 and qp as foilows:

-q1(x,y.t) for z = h/2

-Gp(%,¥,t) for z = -h/2
In the sequel, the notation
q(x,y,t) = qZ(x»yvt) - q'l(x»y’t) (3)

will be used. In plate theory, it is more convenient to work with the moments

"x' My, ny and shearing forces Qx’ Qy defined in the usual manner as

h/2
(MysMyoHy ) = -hfa (9y20y17y, ) 242
(4)
h/2
(Q ’Q ; xzDTyz)d
From the stress and strain relations and equations {4), the expressions
My = tn[(r,()1 + v](ry)1] + °zf("x)2 * vz(ry)zl
My = Dy, vy T4 0pl(r,) + uy(ry) ] (5)
1=v
(—2—‘) Dy (), + <—g—> Oy(ryy),
and
Q) = 5= hluq(Typ) + up(r,,) ]
X ) 1V xz 1 xz', (6)
Q =3 kg (Tyg), + wp(ryy), ]

-5-
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are developed provided that the quantities (rx) y (D) y===, (r,.) (J =1,2)
i Y Y2y

stand for

96 h/4
[(Px)1’ (Py)1. (ny)ll =53 -h;4 (egr€yrryy)2d2
% TIUA

h/2

+ h{4 (exiey’ny

)zdz] (7)

f » h/4
' [(rxz)]l (Pyz)]] = F -h;(; (sz’sz)dz ’ %

h
h

h/2

2 \

In equations (5}, D1 and D2 are the flexural rigidities of the layers given by

U-lha 7}.12h3
Dy = m= P2 = 7(T=,) (8)

The constant « in equation (6) accounts for the thickness-shear motion of the

plate and takes the value of 7//12 as given in [5].

Now, let the displacements be continuous through the interfaces by letting

u, = 29, (X655t), vy = 29 (X,)5t), W, = wx,y,t) (9)

Making use of the strain-displacement relations together with equations (7) and

(9), it is found that

VLR e L S g_;ai
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W Ny
(Px) (rx) = _;Ei (py)] = (Py)a = syl
1 Y
= d X
(Tyy) (ny)z 5% T 5y

= L] = :
(sz)1 = (sz)z = wx + ax| (Pyz)] (Pyz)z

Hence, the moments Mx’ My

functions Uy wy and w:
Mx = DOE§;& + vo-§§xq
My = 00[2;1 ' ”o'%gﬁﬂ

B By

Hyy = 7 (1=vp) (555 +

The same applies to Qx an

n

Qy = 77 hupliy *+ 3%

and ny

awx
3y )

d Qy which become

Note that DO’ Yo and ug are defined as

0,
Dy = Dy *+ Dps vp =

vithovo Wit

— 0. Y%

0

xw‘y-{-

W
oy

can be expraossed in terms of the displacement

(1)

(13)




Equations (11) and (12) are, in fact, similar to those derived in [5] for the
case of a single layer homogeneous plate except that the constants D, v and n

are now replaced by Do, Vo and 4.

Goveandling difgerential equations. Consider the elastodynamic equations of

motion given by

3o ot at a%u
X Xy XZ _ X
% By T Ez p(2) gz
ot do ot 32y
Xy y yz _ y
oty t e - e(2) g (14)
ot ot 30 %W
XZ yZ 2 - Z
=t eyt s e(2) g

in which the mass density may vary in the thickness direction of the laminate.
Multiplying the first two equations by z, expressing the stresses in terms of

moments and integrating the results with respect to z from -h/2 to h/2 lead to

M aH P %Y
X XY = .0 p3 X
%ty % T o
3H M p 9%y
XYY =043 'Yy

ax * ay Qy 12 h at- (15)
3Q,  9Q a

X _ 22w
w T oy ta = eh oz

in which
=] + T = + (16)

pO = 'g" (P] 792): p = > (P] pg)




T a_— — - = T e & o o -

The result of inserting equations (11) and (12) into equations (15) is a

system of second order partial differential equations

(l-v ) (1+vg) By, 3 2 p 3%y
7 D7 + =7 2 Dy §§'(3§5' 7 - Tz Holvy * ax) 3 h? X
(1-vq) (hvg) 5 B ¥, oy e PO L. 2V
— Dovzxp.y —— 0y 3y (5 + 'a}'}"x) -1 uo(wy + "é'i) = y5 h? _zy'at
(17)

where v2 = 32/9x2 + 32/3y2 is the Laplacian operator in two dimensions. Equa-

tions (17) may be combined to give a single equation

3 —
(Dg72 - 3?;—-%%2)(v2 120 82 )w + Sh 32w

172].10 ate wTe at2
12D th
- 0 72 0 32

solving for the transverse displacement w(x,y) of the Taminated plate.

Boundany conditions. In order to derive the boundary conditions that must

be specified on the crack, consider the energy stored in the laminate

_ h/2 .
W= [ Wdz = 7 (M,r + M+ H T

-h/2 yy Xy Xy Oy, eryz) (19)

in which e T I, are related to Yy wy and w as indicated in equations

y'TTT vz
(10). Equations (5) and (6) may thus be applied to render




— 2
W = Dg(Thvg) (T4 )2 + 5= wgh(rd +r2 ) + Dy(1-vg)L(r,-r )2 + 121 (20)

Since the physical constants DO(1+vO) and DO(I-vO) are positive, W is a positive

definite quantity. Hence, W vanishes if and only if the equivalent strains T

x)
Ty etc., vanish individually. Equation (20) also implies that
oW oW W
M B e— M = ~ne H B wem— (2])
X an Ty er Xy arxy
and
oW oW
Q =57 Q = 77— (22)
X AT, Y I
The kinetic energy in the laminate is
h/2 h/2 su, 2 dv,, 2 aw, 2
T _ _ X y ya
T = Tdz = o(2)(z57) + (575 + (5F7) ldz
-hfz Z -hfz ot ot ot
which, when expressed in terms of Vo wy and w, takes the form
_opgh? w2 a2 =
=0 [0 + b 1+ 50 & (23)

It is now possible to write down the expression for the total energy of the

Jaminate at time t:

3 2 2 —_—
‘T‘+’V=z dt /] {%—2—[(—2—?—) b (o) 1+ (2% ydxdy
0
b Fodt [ By 4T, + 7 (24)
: 5t dxdy + Tg + Yy -
0
-10-




where V is the total potential energy. Note that Tb and Vb are the values of
T and V corresponding to time ty. Equation (24) may be integrated by parts and

the results may be arranged to read as*

_ ot oy By

T+Vs= { dt | (Ein'Mn * Efi Hys %%'Qn)ds

A
0

¢ - =
+ { dt [[ q %¥‘dxdy +To + ¥ (28)
0

The above result may be interpreted as the total energy in the laminate at time
t and consists of the initial energy at to plus the work done by the external
forces along the edges and over the surfaces of the laminate during the time in-
terval t-to. The initial and boundary conditions for the laminate can now be

easily extracted from equation (25). They can be summarized as follows:

(1) On _the laminate or crack edges: Any coshination containing one member

. 9% W aw .
of each of the three pairs (§E~, Mn)’ (33—, Hns) and (35, Qn) may be specified

on the crack or laminate edge.

(2) Throughout the laminate: The initial values of Uy wy and w and their

time derivatives need be known.

(3) Tractions and Displacements: The external load q or the displacement

w on the laminate may be specified.

This completes the development of the dynamic laminate plate theory which

will be used to solve a crack problem.

*Refer to page 45 for the derivation of equation (25).

-11-
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A_CRACKED LAMINATE PLATE

As an example, consider the laminate in Figure 1 to be initially at rest

and bent suddenly by a moment with a constant magnitude of M, maintained on the

crack surfaces. The conditions can be stated as

Qy(x,o,t) = ny(x,o.t) = 0 for 0<|x|<= (26)

and

M (x,0,t) = -MgH(t) for |xi<a and ¥ (x,0,t) = 0 for |x|>a (27)

which is of the mixed type. The displacement functions are subjected to the
conditions that

le;g*m [y (%5551, wy(x,y.t), wix,y,t)1 =0

No other external forces or constraints are present.

Laplace transgorm. The governing equations (17) will be solved by intro-

ducing the Laplace transform pair

8

£ (p) = [ f(t)e Plat

Q

£(t) = 5 [ #*(p)ePtdp

m

where the second integral is over the Bromwich path. Applying the first of
equations (28) to (17) yields

-12-




o

* *
(1-\)0) D72 * . (1"'\)0) b L (S‘Px . 3‘1'.\’,) _ n2h
7 %"V T 7 Yo \ax T By
(V=vp) (V+vn) aw* aw* *
0 2% 00 p &, (X . 12h ¥
7 D73y *+ —— Dy 3y (5 * 5‘5/1) T2 Holvy + 3y
Wy oy
2 * — *
3['12-'1 Ho(viw™ + -5-*5 + -@l) = php?w
The analysis may be simplified by letting
W * * *
T I TR
X IX oy ' Ty oy X
such that equations (29) simplify to
D oz ¥ S T N b I WA -
% (V2o - (R60+S ¢ -S w}+-—é—-——5-9-(v-m JH =0
? 2 * 4 =1,.*% -1 * 1-v ) 2_ -
W{V¢ - (Rao+s Yo - S w}-—Q-—s;(-(v-w )W =0
v2(o" ") - STHW" = 0
The new quantities introduced in equations (31) are defined as
12D pahp? -
_ h? - 0 y . 0 =4 - phg2
R-W’S—wzhuo’ Sp = Dy 5% =
and
2(Rs+s™) (D,4D,)

2 =
w (]'V])D1+(]‘V2)Dz

-13-

90h3 *
= 2
) =iz~ P2y

* h
* o Po *
13- Hol¥y * 5= T2~ PRy

(29)

(30)

(31)
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Furthermore, if

o = (ae1)W

is introduced into equations (31), it can be shown that

vzw* - azw* =0
while a and 8 are given by

-1 S5
2 o pab 4 =) 4 S . 2%

*
Consequently, the functions Uy and w; in equations (30) become

*
awz

*

* 3\’(]
by = (B1=1) 55—+ (82°1) 55~

*
and w may be written as

AT,
=Wy T W

. oW *
bt (1) 55t (81) 5+ B

*
o
X

In equations (37), By and 8, are given as

_1.-1
Byp = (RE§+S h %
in which
a5 = % ((Rej + STH) + [(Re} - S

-14-
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It is now apparent that once H*. w: and w; are found from
* L ,, *
(v2-w2)H = 0, (vz-af)w1 =0, (v~-a5)w2 =0 (41)
the problem is basically solved in the Laplace transform plane.

Integral equation., Taking advantage of the symmetry condition with respect
to the y-axis, it 1s not difficult to show that the following integrals

E R

w;(x.y,p) - 7 8{1(s,p) cOS(sx)e-Y‘yds
0

8(2)(s,p) cos(sx)enyzyds (42)

aro
O%— 8

*
Wo(X,¥,p) =

H*(x,y.p) = 8(3)(5.p) sin(sx)e Ysyds

E X1 )
O 8

satisfy equations (41) provided that
",2 " (52+“%,2)1/2' vy = (s2hu?))/2 (43)

The unkncwns B(]), B(z) and 8(3) must be determined from the boundary conditions

in equations (26) and (27) whose Laplace transform are

* *

Qy(x,o,p) = ny(x,o,p) = 0 for 0<x<w (44)
and

* Mo *

My(x,o,p) -5 for O<x<a and wy(x,osp) = 0 for x>a (45)

The appropriate quantities in equations (44) and (45) may be obtained by first
putting equations (42) into (37) and (38). This gives




v - %Z 18 (s,pe ™ (62-1)8(2)(5.p)e-Y2yJ

+ 738(3)(s,p)e-vay} sin(sx)ds
(46)
- 11BN s,me ™ 4 (5)e1)1,8 (8 (s )2
0
+ 58(3)(s.p)e-y3y} cos(sx)ds

and

* 2
W';

O~\8

{8(1)(s.p)e-yjy + B(z)(s,p)e-yzy} cos(sx)ds (47)

The Laplace transform of equations (11) and (12) will clearly involve wx, w

and w. Equations (46) and (47) and equations (45) can be satisfied if the
function C(s,p) obeys the dual integral equations

/ €(s,p) cos(sx)ds = 0 x>a
0

o

™
_ 0
g sG(s,p)C(s,p) cos(sx)ds = RYEvIE x<a

with G(s,p) being a known function

(1-3) *
—7 65p) = ((148)) (1-v5) (s, - (1-8) (v§-v452)*/(s7,)

= 2573(1-v9) (0d-08) w2}/ (a2-a) (49)

TR




The conditions in equations (44) may be used to relate the functions B(]), 8(2)
and 8'3) to c(s,p):

(1-yg)st+
B{1)(s,p) = -;7¥§?§;3;i ¢(s,p)

(1-v0)52+a%

8(2)($o9) = - Tplarag) C(s,p) (50)

s(1-v5)(8,-8;)

&?-QE C(S»p)

3(3)(5!9) =

Without going into details, the solution for equations (48) is of the form [6]

vMoa2 1
C(s,p) = LA é Vg ¥(£,p)dg(sag)de (51)

where Jg is zero order Bessel function of the first kind and the function W*(s,p)

can be found from a Fredholm integral equation of the second kind:
* [ *
v (g,p) + é L(&,n,p)¥ (np)dn = VE (52)
The kernel L{£,n,p) is symmetric in £ and n and takes the form
* s
L(g,n,p) = VEn é s(G(3» p) - 1105(sE)dg(sn)ds (53)
Equation (52) can be evaluated numerically for W*(élp) in the Laplace transform

domain and then irverted into the time domain by using the second of equations

(28).

Dynamic moment intensity gactor. The time dependence of the solution may be

recovered by two different procedures, 1;he first is to apply the Laplace inver-




sion formula to the quantities of interest and obtain the complete solution as
a function of time. Such an approach is not only cumbersome and can often re-
sult in a considerable amount of difficulties in numerical calculations. In
fracture mechanics, since it 1s only necessary to focus attention on the state
of affairs near the crack front, Sth et al [7] have suggested to obtain the
asymptotic stress solution in the Laplace transform domain such that the time
inversion is applied only to the first term of the stress expansion near the
crack tip. This approach has greatly simplified the analysis and will be used

here.

The local solution may be found by expanding the integral in equation (51)
for C(s,p) for large values of the argument s. Once the moments Mi, M; and H;y
are expressed in terms of C(s,p), the resulting integrals may be evaluated to

give the asymptotic expansions:

»*
Ky (p)
M:(r,e,p) - cos g-{l - sin g-sin %3} + 0(r°)
*
Ky (p) .
M;(r,e,p) = — cos %-(1 + sin §~sin 394 + 0(r%) (54)
* K:(P) 0

, ) 36 | 0
ny(r,e.p) = cos 5 sin 3 cos 5= + 0(r°)

where Q; and Q; are nonsingular and remain finite as r+0, i.e.,

Q = Q, = 0(r°) | (55)

The polar coordinates r and & are measured from the crack front as shown in Fig-

ure 1. The parameter

-18-




*
() = My £-LLae) (56)

is the Laplace transform of the dynamic moment intensity factor and v*(l,p) de-

notes the values of the function W*(E,p) near the crack border k=],

Appf&ing the Laplace inversion theorem to equations (54) yields the solution

as a function of time:

Ky (t)
] 8 8 36 (]
M.» r’e’t) B s COS (] - sin 51" } + 0(pr
K( 3 2 ' Z 2 (r%)

Ky (t)
r

Ky (t)

Zr

My(r.e.t) = cos %-(1 + sin sin guﬁ + 0(r%) (57)

ny(r;e;t) = cos %=s1n §=cos %9-* o(r%)

The dynamic moment intensity factor K1(t) may be computed from

MR
ky(6) = g [ Rk ePep (58)

once W*(I.p) is known.

Numerical results. Since the procedure for solving the Fredholm integral
equation is already well known, it is not necessary to cover the details. The
numerical values of ¥ ( ,p) in equation (58) are given in Figures 2 to 4 for
the three different values of “2/“1 = 0.1, 1.0 and 10.0. The Poisson's ratio
and mass density for the layers are assumed to be the same as their variations
in the thickness direction do affect the results appreciably. The function
w*(1,p) is seen to increase monotonically with c,,/pa where ¢,y = (u1/p1)1/2

is the shear wave speed of the material in the outer layers.
-19-
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As an indication of the load intensity transmitted to the crack edge region
as a function of time, the moment intensity factor Kj(t) will be computed from
equation (58) by using the results in Figures 2 to 4. Figures 5 tc 7 display
the variations of the normalize& quantity K1(t)/Mo/§ with the dimensionless
time parameter c21t/a for ”2/"1 = 0.1, 1,0 and 10.0 while the crack length to
1aminate thickness ratio 2a/h takes on the values of 1, 2 and 4. Generally
speaking, K1(t) tends to increase with time reaching a peak and then acquires
an oscillatory character. The peak value of K](t) appears to be inversely pro-
portiona1,to the ratio of 2a/h, i.e., Kl(t) maximum at 2a/h = 1 is larger than
that at 2a/h = 4. The moment intensity tends to decrease as the crack length
is increased. Also, K;(t) maximum occurs earlier when the shear moduli in the

outer layers of the laminate is larger than those in the inner layers. Refer

The influence of “2/“1 can be best illustrated by fixing the ratio of 2a/h and
use wp/u; as a varying parameter. Figure 8 shows a plot of K1(t)/M0¢§ versus

c21t/a as “2/“] takes the values 0.1, 1.0 and 10.0. It is clear that the crack
edge moment intensity can be reduced by letting Hp < Hps i.e., making the shear

moduli of the inner layers to be larger than the moduli of the outer layers.

CONCLUDING REMARKS

A dynamic laminated plate theory is developed with emphases placed on ob-
taining effective solution for the crack configuration where the 1/vr stresé
singularity and the condition of plane strain are preéerved. The radial dis-
tance r is measured from the crack edge. Although each layer in the laminate is
assumed to be isotropic, it is a simple extension to include anisotropy simu-

lating the directional properties of fiber reinforcement. This additional com-

-20-




plexity was not thought to be necessary in this preliminary analysis.

Several revealing conclusions can be made from the numerical results of the
example on the sudden bending of a cracked laminate when compared with a single

layer homogeneous plate.

(1) The crack moment intensity tends to decrease as the crack length to
laminate plate thickness is increased. Hence, a laminated plate has the de-
sirable feature of stabilizing a through crack as it increases its length at

constant load.

(2) The level of the average load intensity transmitted to a through crack

can be reduced by making the inner layers to be stiffer than the outer layers.

The foregoing comments are strictly based on the concept of moment intensity
factor as used in the theory of fracture mechanics. In the normal course of
design, other considerations must also be accounted for. However, the point has
been made that the présent theory, although approximate, is useful for analyzing

laminate failure due to crack propagation.
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T Figure 2 - Numerical values of ¢"(1,p) as a function of Cay/pa

for uy/uy = 0.1 ' ’
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Figure 3 - Numerical values of W*(I,p) as a function of c21/pa
for “2/“1 = 1.0
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Figure 4 - Numerical values of v*(1.P) as a function of c21/pa
' for “2/“1 = 10.0
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Figure 5 - Normalized moment intensity factor as a function of
c21t/a for u2/u1 = 0.1
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Figure 6 - Normalized moment intensity factor as a function of
c21t/a for “2/“] = 1.0
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Figure 8 - Normalized moment intensity factor as a function of
c21t/a for a/h = 1.0 !
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Computer Program for Bending of Chacked Laminate Plates

PRAGRAM HETA(INRUTOHTRIT)

ﬂ REAL NONI(&)sF (Getre) ) oGlhed)oNlG)oPT(4)
' REAL RIl4) 0 (4)

RPEAL. LP(L19)9DTA(YY)
, EAUIVALEMNCE (NONMyR)
| COMMON K1 eK2sh9Ka4
l COMMON/AUX/RoPoPK] ¢PK2sBMU Xy Y

LP(1)=040

DTA())=000

READ 29K )1 eX2eKIsRb

2 FORMATI(12)

i e K1 = NRNDER OF SYSTEM nF ENUATIONS
] * K2 = Hn, OF DISTIMNCT <YERNELS
¢ K3 = NN. OF DATA POINTS
® K& = NNe. OF DATA SETS TO RE EVALUATED
® SET UP DATA POINTS
AK=zK3
| 00 5 N=1+K]
: AN=N

| S PTIN)=AN/AK
; ®» SET UP INTEGRATION MATRIX
| M3K =2
i NEK3=]
| Ask
| A=),/ (3.%A)
NO 10 K=29¢My?2
10 NIK)=2,%A
NO 18 K=]1eNy?
19 N(K)=z4,%A
N{K3)=A
CALCULATE NONHOMOGENFNUS TERMS
RHS=1-Q
NO 22 I=1+K2
PRINT 9
SO FORMAT(1MI])
DO 999 11=1+Ky
DO 35 N=15sKk)
35 MOM(N)=RHS*SQRT (PT (N))
CALCULATE KERNEL MATRICES
CALL CONSTI(D)
DU 20 N=1K3
NO 20 M=) K3
FIMeNoI)=FU(TsPT(M)sPT(N))
20 CONTINUE
CALL CHANGE (FeGeDoT)
CALL LINEQ{GsBsCo K3)
DO 40 L=)+K3
PRINT H6¢PT (L) oNONIL)
6 FORPVAT (SXsFH.LeF15,6)
40 CONTIMUF
LPITI1+1)=NON(KD)
DTA(IT+1)=P
999 CONMTINUF
CALL LAPINVIDTALPF)
22 CONTINUE 3
END coT

»
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Y |

4%

35

30
25
40
we
60

70

PUNCTION STME LT sAe)
COMMONZAUX/FH oP s PR +PK2sRMU Xy Y
MAY7Zz208]Y

NFL30,25? (H=A) .
IF(NEL)&G04H450

SIMLag,n

RPETURN

COMNT INUE

SA=Z(]eb)*7 ([ H)
SdzZ(lsAas2,¥0DFL)
SC2Z(14ADEL) »2(14A®7e#NEL)
Slz(DEL/3)®(SAe2,245H*4,%5C)
IF(S1EQe0,0) OGN Tn 45

KzR ‘
SH=SReSC

NEL=0,5*DEL

SC=zZ(14A+0EL)

JEK=1]

NO § N=3yJe2

AN=N

SC=SC+2(ToAeANCNDEL)

S22 (DEL/3e) ¥ (SA+2,058¢4,25C)
NDIF=ARS((52=S1)/S1)

FR=0,01

1F(DIF=FR)J0925¢2%

SIMp=S§2

RETIIPN

K=z2eK

S1=52

IF(K=MXYZ)1%: 39440

PRINT 42410A48

FOPMAT (SXe® INT, DNES NOT CONVERGE #913+2F9.4)
PRINT 60sXeY

FORMAT (2F10.5)

PO 70 J=1+10

Dip=J

piP=NIP/10,

W=Z(I+DIP)

PRINT A0+ W

CONTINUE

CALL EXIT

END

OR'G'NAL PAG
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SURROUT INE LINEN(AHeToN)
REAL A{MeN) yRIM) 2T IN)
NO 5 Is?N
S A(lel)=A(]el)/A()4))
NO 10 K=2eN
M'K-l
DO 1S 1=l
1S T(1)=A(]+R)
NO 20 JzlM
AlJK)aT (D)
Jl=)el
NO 20 I=JlN
TI=T(1)=A{TeJ)RA{JK)
20  GCONTINUF

A(K,K)=T(K) '
TF(KsEQeN) GO TO In
M=Kl

DO 25 1=MeN
25 A(TK)=T(1)/A(KK)
10 CONTINUE
BACK SURSTITUTE
NO 31 I=1eN
T()=B(I])
Mz]4]
IF(MeaT oMY GO TU 3)
NO 30 JsMeN
B{N=zB(J)=a{Jesl)2T (1)
30 CONTINUFE
3] CONTINUE
NO 35 I=]N
K=Mele]
RIK)STIK)I/A(KoK)
Kl=x=]
IF(K14ENLO) GO TO 15
NO 16 Jl=l+K1
J'—‘K -Jl
TENN=T(JY=A{JyKI#H (K)
34 CONTINUE
35S CONTINUE
CPETURN
END

-33-
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FUNCTION FU(IsAWR)

CCAMON/ALIX/HoPoPK ] PK29RMUI XY

X=A

Y=H

IF(A%8)5,10,5
FU=0,.0

RPETJRN

SUMaSIMP (I+0s095.0)
FR=0.01

DEL =5.0

URPsNEL +5.0
ANDNL=SIMP (] +0EL UP)
NEL =UP

TEST=ABS (ADDL/SUM)
SUM=SUM+ADNL
IFITEST=ER) 15420920
FU=SQRT (Xx®*Y) *#SUM
RETURN

END

SURROUTINE CHAMNGE (FeGsDe 1)
REAL F{&4sa9l)ala(bes) oD(4)

COMMON K1 asK23K3I K4

DO 10 N=]kK3

NO 1N M=1+K3

G (MeN) SF(MeNo 1) #0(N)
COMT INUF

NO 20 N=1sk?3
GINeM)=GINN) ¢l ,0
RETURN

FNN
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FUNCTION HESJO(A)

IF{a=3.15¢5,410
RzA4A/9,

W2],=2,2L99697%R

72R0H
WaVel ,2656708%2
7=7%R
WSWae 316388607
7=2%8
WSwe, 000467907
Z2=74R
W=Ek=,(0030064%7
7=748

RESJUN=w+,00021%7

RETUPN
R=3,/A

WZ.797RRGSA=,000N000TT*R

VA« ,78539R16=.041/639728

7=R8R

WaW= 009527447
VEVe, 0000395422
Z2379H

WSwWe ,N00NIS 202
VEVe,(02R25734Z
72708

WEWe, 0013723742
VEV=,00054612542
Z2=7%R
WZW=,00072R05¢«7
VEV-,00029333%7
7=29R
WEWe,0001647697
VEVe.0001355R%7

RESJUN=W/SART (A) #CNS (V)

RETIRN
FND

O,
Qe

4 ﬁo<w(

U
-35-
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FUMCTION Z2(14S)
COMMONZAUX/HIP oK) «PE298MUs Xy Y
COMPLEX ACoAL)1vAL2.549SH
COMPLEX GAGBIBAJRQIRCyF 46
Pl=3.1415920

PP=zD4pP

P=maH/12,.

AA=] o #7a9RMUR (] ,=Pr 1)/ (] e=PK2)
DEN=4R .2 (]l =PK]1)/ (PPOH#IH2AA)
SOZHOHUAA/ (2,4PJ#RTR (] ,=PK]1)®(],e8M)))
XNLNS(PX ] =PK2+AARPw2) /AA
43=(R+SS)#NEN

72=(R=SS)# (R=SS)#0FO0#DEQ=4«#NED
G=CMPLX(Z22+0.,0) .
AC=CSORT (G)

AL1=0.5% (AR +AC)
AL2=0,5%(AB=AC)
AL3=2,#(P*DEO+1./55) /(1 .=XNUO)
SA=AL2/ (K¥NDEOD+] ,/SS)
SA=8L1/(R¥CEO+]1,.,/S%)

GA=CSART (5%S+AL 1)

FRBsCSQRT (S#S+AL2)
GC=SQRT(S2S+AL3)
RA=2./(1+=XNUN*XNUN)/(ALL1=AL2)
RE=GA2GA=XNUQRS#S
RC=GB2GR=XNUQ#SeS

F=qA°((l--SA)“BH°RR/GA-(l.-SR)“HC“HC/GR-Z.’S*S”GC’(l.-XNUO)“(ALI-AV

11 2)/7AL3)

N=0EAL{F)

GA=AIMAG(F)

JF(NA=0,0)5410+5
7=(N=S)2HESJID(SHX)*RFSID(S*Y)
RETIIRN

RPRINT 9yPeSsF

FORPMAT (4F10.5)

CALL EXIT

FND
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SURWOUTIMF LARPINV (ALAMGPHIL)

THIS PROGRAM EVALUATES ThE CNEVFICIFNTY FNR SERIFS
NF JACORT OQLYNOMIALS WHICH REPHESENTS A | APLACE
INVERPSION INTEGRAL

RPEAL MUL

DIMENSION A(S0) «GLAM(SQ) oPHI(SND) 9C (4 950)
PIMENSION RK(101)+TT(L01)
COMMON/2/TTI9sTFaNT oM eBK»TT

READ 1 sMNoMNyMM

FORMAT (312)

PEAD 2+TI1eTF DT

FOFMAT(3F10,5)

PRINT 96

FORMAT (1H1)

CALL SPLICF(GLAMsPHTI MM, C)

PRINT 101

FORMAT (/////5%X 2 GLAM , FHI @)
PRINT 102+ (GLAM(TI) 4PHI(T) o I=loMM2
roquT(SX'FIO.SQQXOFIO.%)

M11zMM=-] )

PRINT 96

NO 10 I=1eNN

PEAN 3yRETDEL

FOMAT(PFL10.5)

PRINT SR «RFTyDEL

FORMAT(/////7SXe%RETA =24FS5,39% NDELTA =#F5,3) -
O 11 L=1eMN

AL =),

S=1,/{AL+BET) /DFL

CAalLL SPLINF(GLAMIPH]«MMeCeSeG)

F=6eS

IF(AL=2.)H1+RPe83

A(1)=(1,+BET)#0EL®F

6O T0 11
A(P)S((2+BETINEL#F=A(]1))®(3++RET)

60 TO 11

CONTINUE

TOP=1,

Li=L~]

AL1:=01

Nno 12 J=1sL1

AJ=)

TOP=AJ&TOR

CONTINUE

La=2eL~1

'HOT=10

NO 13 J=Lsl2
eJ=J
RUT=(AJ+RET)®ROT
COMTINUF
MUL=ROT/TOP
CSUM=0,0 Q%yﬂ
N0 16 N=leLl G parAl Pace
AN=r 4 1S
IF (AN=2,)85¢R64R7 Lty
TON=1.
60 TO K&

- S o
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Ak

87

15
6A

16

16

1

10
%99

12

10

97

kR

"
NI o e oriie-

TON=AL]

GO 70 ANR

CONT INUF

TOD=10
ICh=l]l=(N=2)

NO 15 J=ICH.LI]
AJd=J

TON=AJ»TDO
COMTINUFE
COUNTINUE

R00=l.

JA=L]1eN

NO 16 J=LsJA
Ad=s )

RON=B0D®* (AJ+BET)
CONTINUE
Co=TNND/KROD
SUM=SUM+CO#*A(N)
CONTINUFE
A(L)SMUL®(DEL¥F=SUM)
COMTINUE

CALL JACSER(DELAJKET)
CONTINUE
COMTINUE

RETURN

END

SURBSNUTINE JACSER(NsCoH)
NIMENSION C(S0)+SF(50) 4P (50)
DIMENSION BRK(101)47T(101)
COMMOMN/2/TToTF DT eMNsBK«TT
TT(1)=0.0

B ())=0.0

M=)

T=T71

T=T+0T

RS2 PEXP(=D#T) =1,

CALL JACOBI (MNeXsHP)
SF(1)=C(1)*P(})

NO 10 L=2«MN

Ll=L.-1

AL =L
SF(L)=SF(L1)+C 1) 20 (L)
CONT INUE

LM=( M+l

AK (LM)=SF(S)

TT(LM) =T

IF(T.LELTF) GO 70 12
PRINT 97

FORMAT(/////75Xs® T K

1 T K #)
NO 31 MY=1+2%

MA=MY ]

MB=MA+?S

HMC=MR+25

MD=1C+ 25

PRIMT GA«TT(MA) BK(MA) ¢ TT(MB) 9sBK(MH) o TT(MC) o BK(MC) s TT(MN) o RK (MD)
96 FORMAT(SX97‘5.293Xo‘-’7.593X9F5.203K¢F7o593x9F5.?¢3XvF7.593X0F5.293Xg

1F7.5)

COMT INUE

RETURN -
FND -39-

RS




o treaies e PR, - —

SURPOUTINE JACOR!(NvKoPoPH)

R

THIS PROGRAM CALCIIH ATES JACOHI POLYNOHIALS OF OROEH
K=1 WITH ARG X AND PARAMETER H 6T =] :

DIMFNSION PB(N)

AN=N

IF(aN=2,)14243

PH(l1)=1. ’

RETURN

PH(1)=1,

PB(2)=X=B¥(l.=X)/2,

RETURN

RSO=R*R

RONF=8+¢1s

PB(1)=1.

98(2)-)( R‘(IQ'X)/ZO

DO 4 K=34N

AK=K

AK1=AK=],

AK2=AK=2,

Kl=x~-1

K2=K=2

COl={(2.2AK])+B)%*x ~
COl=({2,8AK2) +B) 4Cn]
CO1=((2,%AK2) +BONEY#*#(CN]1=-BSAQ)
G022, 9AK2% (AK2+8) 4 ( (2, #AK1) +ly)
CO=P.#AK] P {AK] ¢R) #( (2. #AK2) +R)
PR(K)=(COLl*PR (K1) =CO2%PR(K2))/CO
RETURNM

FND
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:

SURROUTIME SPLINE (XeYeMeCoRINToYINT)
ODIMENSION X(S0)eY(50)eC(4950)
IF(XINT=X(1)) 11041l
10 YINT=Y())
RETURN
11 COMTINUE
TF(X(M)=XINT)1912013
12 YINT=Y (M)
RETURN
13 CONTINUE
K=IM/2
N=M
? CONTINUE
IF(A(K)=XINT)3e14,4S
14 YINT=Y(K)
RETURN
3 CONTINUE
IF(XINT=X{(Kel))aglSy?
1S YINT=Y(Kel)
RETURN
4 CONTINUE
YIMTS(X (K1) =XINT)H(C(L oK)V (X(Ke]l)=XINT)Y®22e¢C(J9K))
YINTEYINTo(XINT=X ()Y (CI2oR) ¥ (XINT=)Y (K))222¢C(&eK))
RPETIRN
S COMTINUE
IF(X(K=1)=XINT)Aolnel7
6 K=K=1
GO TO &
16 YINT=Y(K=1)
RETURN
17 N=K
K=K/2
60 70 2
7 LL=x
K= (N+K) /2
& COMTINUE
IF(X{K}=XINT)3914418
18 CONTINUE
IF(X(K=1)=XINT)AelAs19
P9 N=K
K=(LL*+K)/2
60 7¢ 8
1 PRINT 101
101 FORIMAT(# QUT OF RAMGE FOR INTERPOLATION #)
sTnp
_END_

b

-41-
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SURRODUTIME. SPLICE (YeYeMyC)

DIMENSION X (50)sY(R0)9NISO)1P(S0)eE(S0)+C(L950)
NIMENSTION A(S0+3)4R(S0)e2(50)

MMzM=]

NO 2 K=1eMM

DIK)y=X(Kel)=X(K)

P(X)=DI(R) /6.

E(K)=(Y(Kel)=Y(K))/D(K)

NO 3 K=2+MM

H(K)=E(K)=E (K=1)
Al142)==1e=D(1)/DN(2)
Ally3)=D(1)/D(2)

A(2,3)=P (2)=P(1)4%A (1)
A(2¢2)22%(P(1)eP(2))=P(]1)*A(L,42)
Al2¢3)=A(243)/7A1(242)
R(2)=1({2)1/Aa(22)

DO 4 K=3+MM

A(Ky2)=2., 4 (P(K=1)+D(K))=P(K=1/2A(K=193)
P(K)=B(K)=P(K=]1)%R(K=1)
AlKeA)=P(K)/A(K2)
HIK)=B(K)/A(K2)
N=D{M=2)/0D(14=-1)
Af{Mel)=]l,*0eA(M=2,4n)
A(M,2)==Q=A(My])®A(M=]143)
B(M)ZH (M=) =A(Me]) 48 (M=1)
7(M)ZB(M)/A(Ms2)

MN=M=2

RO A I=19MN

K=Ma]

7(K)=HR(K)=A(Ky3)%Z(K+1)
7(1)==A(142)02(2)=A(1+3)8Z2(3)
DO 7 K=1MM

N=1,/(6.2D(K))

Cll,X)=Z(K)*Q
C(2K)=7(Ke]1)®Q

C(AyK) =Y (KY/D(K) =2 (K) #P (K)
ClayR)=Y(K*l)/D(R)=Z(Ke]l)#P(K)
RETURN

END

-42.
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Momen? Intensity Factond

MH2/MUL = S§N.00 NUL = ,30 MU2 = ,30
A/H 21,00 C21/PA = ,02

02500 «0338AS
«5000 eNS9R29
« 7500 « 090175

1.0000 257784

MUZ2/MUL = 50,00 NUl = ,30 NU2 = ,30

A/H =1,00 C21/PA = ,04

2500 «069941]
«5000 2116396
e 7500 183013
1.0000 «352715

MU2/MU1 = S0.00 NUL1 = ,30 NU2 = ,39

A/H =1.,00 €C21/PA = ,04

«2500 «103272
«5000 166658
7500 0249217
140000 0612993
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S

Lenivation of Equation (25). FEquation (25) can be derived by first expressing
equation (24) in the form

%y, dy, 9%y
TV f dt JJ 9757“ [at et A e ¢ 3 2¥”a€§}dXdy
0

+jdtﬁ ¢w+r +V, (59)

in which 3W/3t can be written as

T, . OT ar
W oW Tx oW Ty, . oW Ty

I or, 3t 3T 3t ary at
oy
= a_ 9_ X
(Mx T ny 3y +Qy) at

oY
3
* (ny =t Y) 5

+ k] (60)

Qu ax +Q ay)

Denoting n and s as the normal and tangential direction, equation (60) may be

integrated to yield

¢, M, 0
11 ¥ 4xay = ¢ (at" Mo * 3t Hns * 5% Qn)ds - JS [t (5 ¢yt - Q)
3y, OH M 8Q, 9Q
+.ﬁl(—a-’)’-§l+-@l-qy)+-g%(-é-i3‘-+-5yx)] dxdy (61)

Putting equation (61) into (59) and observing the relations in equations (15),

the expression for T+V in equation (25) is obtained.
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