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THE USE OF ETGENFUNCTION EXPANSIONS IN THE GENERAL

SOLUTION OF THREE-DIMENSIONAL CRACK PROBLEMS]

by

2 3

R. J. Hartranft™ and G. C. Sih

ABSTRACT

A method is proposed whereby, using eigenfunction expan-
sions, the complete three-dimensional stress and displacement
expressions are developed in series form for the problem of an
infinite solid weakened by a plane of discontinuity or crack.
A suitable coordinate system is selected so that the general
solution can be expressed independently of uncertainties of
both nature of the applied loads and of the stress variations
in the direction parallel to the crack edge. The unbounded
contributions to the stfesses can be shown clearly in a finite
number of terms of the series solution, and they are found to
vary as the inverse square root of the distance from the crack
front. Inside a small region around the crack edge, the state
of affairs reduces to that of plane strain in the two-dimen-

sional case. The results not only provide an improved under-

]The results communicated in this paper were obtained in the
course of a research program conducted under Grant NGR-39-007-
025 with the National Aeronautics and Space Administration.

2Assistant Professor of Mechanics, Lehigh University, Bethlehem,
Pennsylvania.

3Professor of Mechanics, Lehigh University; Bethlehem, Pennsyl-
vania. ‘



standing of the three-dimensional aspects of fracture but also
gain some insight into the triaxial characteristics of the

crack-edge stresses interior to a thick plate.

The proposed method can also be extended to problems con-
cerhing the distribution of three-dimensional stresses around

"wedge-like discontinuities.



INTRODUCTION

Recent interest on the exploration of stress distribution
1n~bodies containing flaws or cracks can be evidenced by the
gizab]e volume of literature that has built up. Most of the
work on the subject has been based on the.p1ane theory of elas-
ticity. It is to be expected, however, that in many instances
the deviations from the two-dimensional theory, due to the
‘three-dimensional character of the stress distribution near

the crack boundary, can be of importance.

Methods for the solution of linear elasticity equations
are generally dictated by the topology of the region under con-
sideration, and developed for their intended purposes. For ex-
ample, although the symbolic method of Lur'e []]4 and the
Fourier-Bessel expansion technique of Green [2] are adequate
for handling thick'platé problems, they are not suitable for
solving three-dimensional problems with geometrically-induced
singularities. Because of the lack of a systematic way of
treating crack problems in three dimensions, only a few effec-
tive solutions are available and these have been restricted to
a particular crack geometry under simple types of loading. A
non-trivial crack geometry, which has received some attention
in the past, is that of an ellipse as a surface of discontinuity,
the penny-shaped crack problem of Sneddon [3] being a special

case. Based on known properties of the classical potential

4Numbers in brackets designate References at end of paper.
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functions, Green and Sneddon [4] discussed the problem of an
elliptical crack whose faces are loaded normally, while Kassir
and Sih [5] solved the same problem with uniform shear loads.
.The complementary problem of a flat crack covering the outside

of an ellipse was also 1nvestiga£ed by Kassir and Sih [6].

‘The three-dimensional crack problem to be considered in
this paper is, in many ways, motivated by the work of Williams
[7-9] and Sih et al [10-12]. It was Williams [7] who first
conceived the idea of eigenfunction expansions and employed it
to analyze semi-infinite crack and wedge problems in two vari-

ables. He established a series solution for the in-plane

stresses
@ -] 2F
OY‘ = Z r [()\n+]) Fl"l + dez_]s
n=o
T e (1)
o, = r A (a +1) F 1
"9 nto n‘"n n
o A -1 dF
n n
T - z r A T o
re n<o n de
where
Fn(e) = a, sin(xn+1)e + bn cos(;n+1)e tc sin(An-l)e
+d cos(r -1)e, (2)



and the eigenvalues A, are obtainable from the stress and/or
displacement conditions specified on the edges of the crack or

wedge. The constant coefficients s b ., etc. in Williams'

n
analysis, however, were not found until Sih and Rfce [10,11]
recognized that once the general form of the solution is known
in r and 6, the constants in equation (2) can be determined
from the Boussinesq's solution in two dimensions. In this way,
a number of dissimilar (or similar) media problems involving
concentrated forces applied to the surfaces of semi-infinite
and finite cracks were solved. In fact, Loeber and Sih [12]
have established the equivalence between the method of eigen-

function expahsions and the well-known Riemann-Hilbert formu-

lation as presented by Muskhelishvili.

It is the central purpose of this paper to incorporate a
thirdvdimension into the eigenfunction expansion method and to
provide a general solution of the three-dimensiona] stress and
displacement fields for the case of a plane crack embedded in
an elastic solid. Unlike the planar problem, where homogeneous
relations were obtained between the independent constants in
equation (2), the three-dimensional analysis leads to recur-
rence relations between the coefficients, which are no longer
constants, but functions of the third variable. Two individual
sets of results are considered. The firsf set contains integer
powers, say n, of r and the second set contains n + % powers of
r, where r is the radial distance measured from the leading
edge of the crack. These results may be used to answer some
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of the pressing questions'concerning the three-dimensional
character of the stress distribution in the vicinity of the

crack front.

PRELIMINARY CONSIDERATIONS

Since the chief interest in the solution to thé crack prob-
Tem {s centered on the disturbances local to the leading edge
of the crack, it is essential to select a coordinate’system
that will exhibit the singular character of the stresses in a
natural manner. To this end, the crack problem will be formu-
lated in circular cylindrical coordinates (r,e,z), related to

the Cartesian system according to
X = r coseé, y = r sine, z = 2z

The elastic solid is assumed to be infinitely extended in the
Xx-, y- and z-directions, and contains a crack in the form of a
half-plane with the z-axis along the crack edge. The sides of

the crack coincide with the surfaces 8 = = ¢, where
O<r<w, -g<f<m, =o<zZ<o,

Within the framework of the linear theory of elasticity,
the equations of equilibrium in cylindrical coordinates must

be so1ved for the displacement components (ur, Voo wz):

RV aye

2
B—YT+ (1—2\)) [(V2 - ?2-) Ur - —Fz-g—é——] = 0,



T 9v

[+

. 2
F3et (1-2v) [(v2 - ) v + o =]

9

22+ (1-2v) v2w, = 0.

8

=0, (3)

In equations (3), v is Poisson's ratio, v is the dilatation

giveh by

and the Laplace operator is defined as

' 2 1 1 2 52
2 =2 + - 2y d +
v ar2 r 3r  rZ 362 3z2

The boundary conditions wi]] be written in terms of the stresses,

which are related to the displacements through the Hooke's law

for an isotropic body:

au

= R = y(— —L . 8 4 __90
Op = Av * 2u Trg - My 30 r T
1 sv u v 1 ow
;) r 0 z
= + - —2 + — = y(— + - —=
op = 2+ 2u (53 r ) Te T ulgz g ) (4)
aw ow 3u
pi y4 r
= — -~ _—t ——
Oy = Av * 2u 577 e = HEE 77 )
The Lame's coefficients are denoted by A and u.

CONSTRUCTION OF SERIES SOLUTION

For the solution of the half-plane crack problem, it turns
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out to be very convenient to expand the displacement components

in the double series

© © rtn
2pu, =y y or" u{™ (o,251 ),
" m=o n=zo : m
X o -} A+n
2pv, = J Y r" vim (6,252 ), (5)
®  m=o0 n%o n ' m
o -4 x_+n
2uw, = ) ] r m W(m)(G,Z;A ).
2 mo n=o n m

The eigenvalues - (m=0,1,2,---) as powers of r are assumed to
be constants, and Ugm), ng), wﬁm) are functions of 8 and z
only. From equations (4), the corresponding stress components

follow immediately. They are

© o + -'l
T T T (L) )] ulm)
m=0 n=0 .

(1—2v)cr

(m) (m)
.y [avn . awn_]]}
aQ 27 ®

w w A Ftn-1

(-2)og = ] J v (D Oyn-1) ] u{m
(m) (m)
oV W
¢ (1) iy S5,



o [ A +n—1 av(m)

(]-Zv)oz = mzo ngo P m {v[(Am+n+1) Uém) + —3%——]
(m)
oW
+ (1-v) —0=hy,

o - _ (m)
Am+n 1 35U

2x= ] ]or [g— + Gyen-1) 1,

(m) (m) )
m m
aV 1y oWp

0 [-<] +n-
lm n-1 . :
32 30 ?

2T62=z ZY‘ L

- e ®  a+n-1 ayulm |
2 .= 7} p M [———-'l—'-l + (a_+n) w(m)].
Zr m=o nzo 9z m n

where Ugm), ng)’ W£m) are zero for n<0. The required proper-
ties of differentiability have been presumed throughout the

foregoing computations.

In order to gain some knowledge on the structure of the
solution in o and z, equations (5) are inserted into the dis-
placement equations of equilibrium given by equations (3).

This yields a system of three simultaneous partial differential

equations in three unknown functions as

52y(m) Sy (m)
(1-2v) —55— + 2(1-v) [(3,*n)2-1] uém) + (A +n-3+4y) ag
(m) 2 (m)
W 22U
= - (a*n-1) 332" - (1-2v) ‘32%:Z=
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BZV(m) BU(m)

2(1-v) —gi—+ (1-2v) [(3 +n)2-17 ¥{™) & (3 sn+3-40) S0

52y (m) 52y (m)
-1 -2
= - ez - (7)) e

(7)

(m) (m) (m)

92N sU 52y
(]-Zv) [—36%—— + (Am+n)2 wﬁm)] = _ (Am+") a;-] ~ aeg;]
aZw(m)

- 2(]_\)) _B_Z_g___zg

where m>0 and n>0. Equations (7) may also be regarded as re-
currence relations expressing Uém), Vﬁm) and wgm) in terms of
their previous values. It is clear that for each value of n,
a product solution in 8 and z can be found from equations (7).

For n=0, the solution takes the forms

(m) (m)

(m)
U0 = B](z) cos(xm+1)e + BZTZ) sin(xm+1)e

+

m m
C](z) cos(Am—1)e + Cz(z) sin(Am-j)e,

(m) (m)

)
0o = - B1(z) sin(xm+1)e + Bz?z) cos(xm+1)e

Apt3-4v (m) . (m)
+ X -3hy [- €,(2) sin(h -1)e + C,(2) cos(a~1)el,

~10-



~(m) (m) (m)
wo = A](z) cosi e + Az(z) sina o (8)

: (m m (m)
in which Aj(z), Bj(z) and Cj(z) (j=1,2) are arbitrary functions
of z. Similarly, solutions cdrresponding to the remaining

values of n may be written down. These details will be deferred.

For further development of the solution, it is crucial to

apply the free crack surface conditions
g, = 1 = T = 0, for o8 = ¢t g (9)

so as to evaluate the eigenvalues Ape Without loss in general-
ity, a, will be determined from the solution of equations (7)
for n=0, i.e., equations (8). Making use of equations (6),

(8) and (9), there results in six conditions

(m)

( _
B](z) COS(Am+])w + BQTZ) sin(Am+1)n

At (m) \ (m) .
+ A—m—m [C](Z) COS()\m_])'ﬂ' + CZ(Z) S”‘(}‘m_”ﬁ] =0,
(m) » (m)
B,(2z) cos(a +1)m -.By(2z) sin(h +1)w
Am+] (m) (m) .
+ e T [Cy(2) cos(a ~1)m - Cy(2) sin(ar -1)7] = O,
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(m) (m)
- B1(z) s1n(xm+1)n + Bz(z) cos(xm+])n

Ap- (m) (m)
T T3 hy [- €y(2) sin(a -1)m + C,(2) cos(n,-1)w] = O,

m
](z) sin(xm+1)n + Bz(z) cos(xm+1)n

xm—l (m) . (m)
+ X;T§$EG [C](z) s1n(xm-1)ﬂ + Cz(z) cos(xm—l)n] = 0,
(10)
(m) (m)
- Ay(z) sinym + Ay(z) cosaym = 0,
(m) (m)
A](z) sinagm + Az(z) cosx m = 0,
(m) (m) (m)

to solve for the six unknown functions Aj(z), Bj(z) and Cj(z)
(j=1,2). For a non-trivial solution, the determinant of the
coefficients of these functions must vanish, and hence A, are

found to be the roots of the characteristic-value equation
sin Zﬂkm =0
which renders
=D = _——
)\m“ 2°? m 031’29 (]1)

The negative values of m have been excluded in equation (11) so
that the boundedness conditions of the displacements are not

violated as r-0.
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By virtue of equation (11), the double-series representation
of each component of the displacement vector in equations (5)

can be reduced to a single power series5 inr, i.e.,

n
2uup = I vt £ (0,2),
n
2 =7 2
U Ve = Z r gn(esz)s (]2)
. n=o0
o n
_ 2
2u w, = nzo r hn(e,z).

For the same reason, the expressions for the stresses in equa-

tions (6) may be simplified and they become-

(-2e, = T 2 e (2o y Mn-zy
(1—2\))06 = nzo r%-] {[]+(-’21-1)\)] f + (1-v) -:-Z—” + v i;_lzl:&},
(1-2v)0, = nlfo kal (LYY £, o+ 2oy 4 (1-9) a:'z"?},

2 <, = nzo.r%'] [ + (3-1) 5,1,

5Depending on the nature of the eigenvalues Ao the double-~

series representation of the displacement vector must, in
general, be retained. This point will become evident in the
analysis of the wedge problem later on.



n
2 Ty = E rZ—] ign 322'2)’

n=o

(13)
n
w -1 of
- 2 n n-2

2Tzr—nZoY‘ (2 hn+ 57 ).

The basic unknowns fn’ 9, and hn'on the knowledge of which de-
pends the solution of the crack problem must now be found from
the Tlinear equations in the classical theory of elasticity.

This is the objective of the next section.

DETERMINATION OF DISPLACEMENT FUNCTIONS

Consider now the substitution of equations (12) into the
three equations of equilibrium in terms of displacements.
Assuming that the resulting expressions will hold for arbitrary

values of r, it is found that

32f

(]-Zv) g@yﬂ + 2(1—v)(%3~]) fn + (%—3+4v) ;gﬂ
= - (%—1) 8:2'2 - (1-2v) azZn—4
_erh (12 229,

T 7 Taesz T ~2v} YA
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32h 2 of 32g
n n - n - n-2 n-2
(1-2v) (Ggz v - hy) = - 53 57— - 2092
~ 232h
- 2(1-v) —3=t (14)

This system of three partial differential equations is similar
to that of equations (7) and can be solved for the functions

fo» 9, and h (n=0,1,2,---). The solution for n=0 is

(1) (2)
f0 = B0 coso + B0 sineg
(1) (2)
+ (3-4v) [ Cy © sine - Cy © co0s0];
(15)
(1) (1) . (2) (2)
99 = - [ Byg+ Colsine+ [ By+  Cyl cose
(1) (2)
+ (3-4yv) [ Co © cose + Cy ® sine],
(1) (2)
h0 = A0 + A0 e,
while for n=2, it takes the form
(n_ (2) (1) . (@)
f2 = B2 cos26 + B2 sin2e + 62 Y & P Aé 8,
(. (2) (2)
g, = - B, sin2e + B, cos2e + Cys (16)
(1) (2) (1) , (2)
h2 = A2 cosg + A2 sing - Cé e sing + C6 6 coso
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| (i) (i)
In the sequel, the quantities such as A4m’ B4m’ etc. for
i=1,2 are to ?e understood as arbitrary functions of z and
i) :
primes (e.g. AAm) will denote differentiation with respect

to z.

At this point, it is convenient to separate the unknown
functions into two groups distinguished by subscripts being
even and odd integers as follows:

(A) f

f o etc. for m=1,2,---.

4m’ 4m+

(B) faneq> Tapes> etc. for m=0,1,2,---.

The calculations for finding these functions involve a con-
siderable amount of work and will not be dwelt on here. Only

the final results will be given.

Group (A). To simplify the development of the recurrence

relations in subsequent work, the problem will be further sub-
divided into two parts. The first part contains those functions

of z with subscripts 4m and the second with 4m+2 for m>1.

1. Even integers of 4m. For m>1, it can be shown

that

(1) (2)
fam = B4m cos(2m+1)e + Bam sin(2m+1)e
(1) (2)
(2m-3+4v) [ C4m cos(2m-1)e + C4m sin(2m-1)e]

o+

(M) (2)

ing +
m ®ap © sine m ®ap © €O0se
~-16-



(1) (2)

m-1
+ [ a,. cos(2k+1)e + a,. sin(2k+1)e],
kZo K 4m K 4m

(1) (2)

Oy = - Banm sin(2m+1)e + Byp cos(2m+1)e

(1) (2)
+ (2m+3-4v) [- C4m sin(2m-1)s + Cam cos(2m-1)9]

(1) (2)
- R 8 cose + B 8 sins
" 4m m 4m

mil : (1 , ) (2) ( Yol
¥ - B sin(2k+1)e + 8 cos(2k+1)e],
k<o K Am K

(17)
(1) (2) (1 (2)

h4m = A4m cos2me + A4m sin2me + Yam +

Ym0
m m 4m

2 (1) (2)

+ Z [ Yaq €OS 2(k+1)e + kny4m

sin 2(k+1)e].
0 k :

(1) (i) (1)

8 i=1,2; p>1
k a4p’ k 4p’ k Y4p’ p_

in equations (17) for the various values Of(g)are az§§ functions
i i
of z and they can be expressed in terms of A2p’

B, , etc.

2p
as given by

-17-



(4) ON (1 ()
0 ay = -7 [ AZ + (1-2v) B0 + T (1-4v) CO]’
(o ()
] a4 = Z (1-4v) CO,
(18)
(i) _ (i)
0 4T T oW
(i) 1 (1)
1 54 = - 3 (3'4\)) CB:
and,

(i)
0 Y4 = 03

(1) (1) (1) (2)
2(1-2v) : Yq = - Cé - (1-v) Aa, 8(1-v) : Yg

(2)
= - (3-2v) AB.

The other coefficients may be obtained from the recurrence re-

lations, where for m326:

nopbar age = [2(1-v)(2m-3)2 - (1-2v)(4m2-1)] x

m-2

65ce Part 2 of this group (A) for the terms with subscripts of
the form 4m+2.

-18-



(i) (1)
[(2n-1)  vjpop * (1-29)

x

ail
m-2 4m-4

(1) -
(1-2v) (2m-5+4v) €4 41 - [(2n-3+4v)(20-3)] X

+

(i) (1)
x [(2m-3) L, YAm-2 + (1-2v) m_234m_4
(i)
+ (1-2v)(2m+1-4v) Cin-als

(i)

no28am m_234m = [(1-2v)(4m-3)2 - 2(1-v)(4m2-1)] x

(i)
Yho o+ (1-2v) Bh (19)
M- 2 4m-2 m-2 4m-4

[(2m-3)

x

+

i)
(1-2v) (2m+1-4v) . sz_4] + [(2m+3-4v)(2m-3)] x

(i) (i)
x [(2m-1) m-2¥4m'2 + (1-2v) m-2a4m'4
(i)
+ (1-2v)(2m-5+4v) sz_4],
| (1) (1) (1)
2(1-2v)(2m-1) m—2y4m = -m m_2a4m_2 + (m-1) m-284m'2
(i) (i)

+ 2(1-2v)(2m-1)  Cpo o = (1-v)  Ag g
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and

(i) ) o2y ()
no14m T T m N Y Bam-als
(i) (i)

T e 20
m-]B4m m-1 4m ( )
(i)
m-1Y4m - 0

In addition,
(1) (i) (1)
2 4m . Gpgm = (2m-3+4v) [m-]Y4m-2 - (1-2v) m~]s4m_4]
(i)
+ [1-2(1-2v)(2m2-1)1[(2m-1) ]YAm—Z
m-
(.i) H
-2 el (21)
(1) (1)
nlam i Bay = - (2m+3-4v) [(2m-1)m_]Y4m_2

+ (1-2v) (1za2m_4] + [1+4(1-v)(2m2-1)] x
m_

1
x [ Y, - (1-2v) g 1,
m"‘] 4m"'2 m..'| 4m..4
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2(1-2v)m2 Yao = = m a! - (1-v) .
o Am m-1 4m-2 m-1 Am-4
in which,
mbam = 32(1-v)(1-2v) m2(m2-1).

For k=0 and m>3, the additional coefficients are

(i) ) (1)
OA4m 0 Apm = [1-2(1-2v)(2m2-1] [-2(1-2v) . %am
(1) (1) ‘ (i) .
+ (2m-3+4v) . Bam + (2m-1) 0 Y a4m-2 + (1-2v) 0 u4m_4]
[2m-3+4v] [4(1-v) (1) + (2m+3-4v) R
- m= v ] -V m+ro-4av o
- Bam m 4m
. (i) ‘ . (1) ‘ + (1-20) (i) . ]
m-174m-2 ©  Vém-2 vy Pam-ad (22)
(1) | (1) (1)
0A4m 0 B4m = [2m+3-4v] [-2(1-2v) . %am + (2m-3+4v) . Bam
(1) ' (i) ) )
+ (2m-1) 0 Yam- 2 + (1-2y) 0 a4mf4] - [1+4(1-v)(2m2-1] x
(1) (1) (1)
x [4(1-v) _ Bam t (2m+3-4g) . agn t m_]y4m_2
(.i) 1 (i) n
Py Yamez 2 U-2v) B 4]
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(i) (1) (i)

2(1-2v)(m2-1) Y = - m a + B
: 0 4m 0 4m-2 g 4m-2
(-l ) (i) H
- -V \ T
o ' 4m 4
Moreover, the results for k=1,2,---, m-3 when m>4 are

(1) :
kdam ) Gpm = [2(]-v)(2k+1)2 - (1-2v)(4m2-1)] x
(1) (i)
x [(2m-1) y Y&m-Z + (1-2v) y aZm—4]

(i)
- [(2m-3+4v)(2k+1)J[(2k+1) ; YAm—Z + (1-2v)

(i)

y Bam = [(1-2v)(2k+1)2 - 2(1-v)(4m2-1)] x

k%4m

(1) (1)
[(2k+1) Yim2 * (1-2v) ) B 4m-41

(1)
+ [(2m+3-4v) (2k+1) 10 (2m-1) ; Vinp * (1-2v)
W (1
2(1-29) [n-(kH1)2] -~ Tygy = - m o Cagy (ki)
(1) 1
- (1-v) K Y4m-42

-22-
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(i)

(i)

BZm-4]’

(23)
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(1)
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The contraction kA4m stands for

Ban = 201=v)(1-2v) [(2k+1)2 - (2m+1)21[(2k+1)2 - (2m-1)2],

where k=0,1,2,---, m-2.

2. Even integers of 4m+2. Following the same proce-

dure, the functions f4m+2’ Igme2> etc. for m>1 are obtained:

(1) (2) .
fame2 = Bapip cos2(m+l)e + B, ., sin2(m+1)e

(1) (2)

+ 2(m-142v) [ Cqmep COS2MmE + Came? sin2mo]]

(1) (2)
o + 0. 8
m 4dm+2 m 4nt?

T (1) (2)
g2 cos2(k+1)e + )

+ mz

k

o sin2(k+1)e],
o K 4m+2

(24)
(1) _ (2)
Iameo = - Bam+? sin2(m+1)e + B am+2 cos2(m+1)e

(1) (2)
2(m+2-2v) [- Came2 sin2me + Camsr cos2mé ]

-+

(2) m-1 (1)

B + [- &8 sin2(k+1)e
m Amt2 kZo  Am+2

4o

(2)

cos2(k+1)e],
k .

Bam+2

-23-



(1) (2) ,
hamsp = Bagep cos(2m+l)e + A, .o sin(2m+l)e

(1) (2)

- ine +

m~-1 (1) (2)
+ 7 [ Y 4+ 2 cos(2k+1)e + Yam+2 sin(2k+1)e].
k=o k k
o (1) (1) |
When m=1 and k=0,1, the coefficients ) @ pme2 5 B4m+2’ etc.
are given by
(1) , () (1)
0 %6712 [2 Ay + (¥-2v) B3I,
M (M (2)  (2)
16(1-2v) : g = AO + 4y CZ , 16(1-v) : ag =
(2
(i) (1)
B = = Qproy
0o © 0o ©
m @  (2)
B = [} g = -9 "s
1 6 1 6 8 2
and
(1) () Gy oy )y ()
67 ‘4w ARy *g By *15 o'
(1) ,
e = -7 Co
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The’first few recurrence relations are (m32)7

(1)
m2bamsz camez = [B(1-V)(me1)2 - 4(1-20) m(m1)] x

(1) (i)
[2(1-2v)(m-2+2v) sz_z + 2m

x

YI
m-2 4m

(1)
(1-2v) 2“2m-2] - [4(m-142v)(m-1)] x

+
m
(i) t (i)l
x [2(1-2v)(m+1-2v) C4m-2 + 2(m-1) m—2Y4m
(1) n
+ (]’ZV) m_234m_2]5 (26)
(4) - i
(1) (i)
x [2(1-2v)(m+1-2v)  Cy. , + 2(m-1) zvam
, m- v
(1)
+ (1-2v) ZBZm-z] + [4(m+2-2v) (m-1)] x
m-
(1) n (i) 1
x [2(1-2v)(m-2+2v) Cap-p * 2m m-2Y4m
(i)
+ (]-ZV) m_2a4m'2]’

7The terms with subscripts of the form 4m may be found in Part
1 of this group (A).
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and

and

(1) (1)

(1-2v) [(2m+1)2 - (2m-3)2] = - (2m+1) /

nop 4m+2 nop 4m
(i) | (i)
+ (2m-3) m-234m - 2(1‘V)_m_2Y4m_2-
(i) 1 (1) 1 (i)
ooptAmt2 T T 2(ZmET) [ Ay * 25 (71-2v) Bin-21>
(1) (1)
oopoAme2 T L Came2e
(27)
(1) (i) (i)
8(1-2v)m m~]y4m+2 = 8m(1-2v) C4m - (2m+1) m-1a4m
(i) (i)
FemD) ey - 2010) Ay,
(i) (i) (i
8(1-v) m(m+1) . Opm+2 =~ 2m . Yam " (1-2v) m_1a4m_2,
(1)
m Bamez = 0>
(28)
(2) (2) 1 , (2)
mlme 1) Bamez = Bam-2 Y ATV mmeTy L2 van
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+ (m+2—2v) n - ]9
1

(1) (i) (i)
4(]-2V) m(m+]) o Y4m+2 = - [(2m+]) m a4m f m B4m

(1.) "
+ 2(1-v) m_]y4m_2].

For m>3, the terms involving k=0 can be written as

(i)
OA4m+2 0 Cgmto = [8(1-v) - 4(1-2v) m(m+])J X

. (1) 7 (7) _ ' ,
X [2m 0 y&m + (1-2v) . aZm-ZJ - [4(m-1+2v)] x

TIPS LV
X Y4 Kad Bam-21>
o M o " (29)
(1) (1) (1)
ofamez | Bamez T [A(mR2-20)1L2m - fygy 4 (1-2v) - Cagy o)

| (1) (i)
+ [4(1-2) - 8(1-v) mne)IL2 - Cyjy ¢ (1-20)  Tegy o],

| (1) (1) (1)
40-20) mme 1) vgmep = 200200 vgpep - Fap
IR S



and the remaining terms for k=1,2,---, m-3 when m>4 are obtain-

able from

(i)

gz = [801-) (k)7 - 401-20) m(m1)] x

k2 4m+2

(i) (i)
x [2m y T (1-2v) ’ “Zm-z] - [4(m-1+2v)(k+1)] x

(i) (i)
x [2(k+1) ) Yap * (1-2v) ) Bam-21>

(i) (i)
k2 am+2 y Bame2 = [4(m+2-2v)(k+1)]1[2m ) Yhm

(30)

(1)
+ (1-2v) ; ahr o1+ [4(1-20) (k+1)2 = 8(1-v) m(m+1)] x

(1) (1)
xL2(ke)) g+ (0200 Tege o]

(i) (1)
(1-2v) [(2m+1)2 - (2k+1)2] ) Tamez = " (2m+1) ) a&m
(i) (i)
+ (2k+1) ) Bap - 2(1-v) y Ydm-2"

where

Bamep = 3201-9) (1-29) [(m1)2 = (k+1)2][m2 - (k+1)2]
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and k=0,1,2,---, m-2.

This completes the solution of fn’ 9y hn for values

of n=0,2,4, etc. The forms of these functions for n=1,3,5, etc.

remain to be found.

Group (B). Now, let the functions f,» 9,2 h, with n=1,5,9,

n
etc. and n=3,7,11, etc. be treated separately.

1. 0dd integers of 4m+1. The satisfaction of equations

(14) for m>0 requires

(1)
= B

(2)

‘ 3 : 3
fam+ am+1 cos(2m + 7)9 + B4m+1 sin(2m + ?)e

(1) :
(4m-5+8v) [ Came1 cos(2m - f)e

o+

(2) (1)

1
L " “4m+1 cos(2k - f)e

-+

C4m+1 sin(2m - %)6] +

P
H~133

0

(2)
+ g Sin(2k - )60l (31)

(1)

: 3 (2)
Yame1 © ~ Bam+1 sin(2m + 7)o +

3
B4m+] cos(2m + f)e

(1)
+ (4m+7-8v) [~ Came1 sin(2m - %)e

(2) 1
+ C4m+] cos(2m - 7)6]
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[ ) in(2k 1)
- 8 . sin - 5)0
o K 4m+1 : 2

+
He~—13

+ (2) cos(2k - l)e]
} Bam+3 7/04>

(1)

(@
4m+1 - Agmeq cos(2m + )6 +

. 1

1 (1)
0 k

m

"]

-]
) Y 4m+ 1 cos(2k + 7)9

(2)

sin(2k + %)e],
K

Yam+1

and that

() (1) (1)

0 o7 = B] = Y1 =0 (32)

The coefficients corresponding to m>1 are found a58

(1) 3 1
m—]A4m+] m_]a4m+] = - [(1-2v)(2m + 7)(2m - 7)

- O ()
- 2(]—\))(2"1 - '2") ][(zm - 7) m ]Y4m_‘l + (]'2\’) m-]a4m_3

(1) 1 5
+ (1-2v)(4m-9+8v) Cam-31 - [3(4m-548v)(2m - 5)] x

8The terms with subscripts of the form 4m+3 are given in Part
2 of this group (B).
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| 5, (1) (i)
x [(2m - 5)  vyppoq + (1-2v)

B"
m-1 m-1 4m-3

(1)
+ (1-2v) (4m¥3-8v)  Cj o1,

(1) 1 5
m_]A4m+-l m_164m+1 = [?‘(4m+7"8\))(2m - 7)] X

1, (1) (1)
x [{2m - ) ypp.q + (1-2v)

aﬂ
m-1 m-1 4m-3

(i) 3 1
+ (1-2v)(4m-9+8v) ¢4 o1 - [2(1-v)(2m + F)(2m - 1)

(i (33)
5 5, (1)
- (1-2v)(2m - §)2][(2m - ?) ]Y&m_]
m-
(i) (i)
+ (1-2v) ]BZm-B + (1-2v)(4m+3-8v) Cam-31>
m—
(i) (1)
4(4m-1)(1-2v) ]Y4m+] = 8(4m-1)(1-2v) Cém_]
m—
~ (i) (i)
- 4(1-v)  Ap 4 - (4m+1) o %4m-1
(i) '
+ (4m‘3) m-]64m_] .
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and

(i) - . ] (i)A| - Z(T—Zv) (i)Bu

m “am+1 Am+1 4m-1 TemZ-1 4m-3°

(i) (i)

. Bame1 = ®ameT (34)
(i)

C Yame1 T 0

When m>2, the additional recurrence equations may be established:

(1) ] ] 7, G,
cPame1 |, came1 = 7 2(Am-548v)(2k - g) {2k - 7)) vigg

(1) 3 1
F 02 e g] - [0z (em s Bem - )

1.2 1. (1) (i)
- 200-0)(2k = ) 02m - g) - Cvggg + (1-20)  Cagy g)
(35)
(i) 1 1 p, (1)
Khme1 | Pame1 T Z(4m+7-8v)(2k - ) [(2m - 3) ) Yam-1

(1) 3 1
+ (1-2v)  Cejy 3] - [200-0)(2m ¢ ) (20 - )

|2 o) (i)
- (20 (2k - ALK = ) iy * (02 ey 5,
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(i) (1)
(-20) [zm + 7 - (2K + 7] Tvyggeq = - (204 ) e
N (1)
+(2k + 5) c Bap-q - 2(1-v) K Yim-3

which are valid for k=0,1,2,---, m-2, while the expression
2 2
Bame1 = 2(1-v)(1-2v) [(2m + %) - (2K - %) ] x

1,2 1,2
x[(Zm-'é') '(Zk-g)]

applies for k=0,1,2,---, m-1.

2. 0dd integers of 4m+3. As before, it can be verified
that

(1) 5 (2) . 5
fames = Bgm+3 cos(2m + 7)9 * Bam+3 sin(2m + ?)e

+

(1)
(4m-3+8v) [ C4m+3 cos(2m + %)e

(2) (1)

1
[ ) % pm+3 cos(2k + 7)6

+

He~=

Capeg STn(2m + )e] +

k=o

(2) , :
+ ) %am+3 sin(2k + 7)6],
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(1)
B

(2)

At 3 sin{(2m + %)e + B4m+3 cos(2m + %)9

Ygm+3 = °

(1)
+ (4m+9-8v) [- C, ., sin(2m + 3)o

(2) ] m (1) . i
+ Came3 cos(2m + 7)9] + kzo [- ) Bam+3 sin(2k + 7)6

+ (2)3 cos(2k + 4o, (36)
K 4m+3 2

(1)

. (2)
h4m+3 = A4m+3 cos(2m + ?)e +

. 3
A4m+3 sin(2m + §)6

(1) L (@)

. 1
. [ k-y4m+3 cos(2k - 2)9 + ) Yam+3 sin(2k - 7)6].

o+
It~ 53

k

satisfy equations (14) provided

Y3 = 2 Ci (37)

Omitting the details, the results for m>] are9

(1) 5 ]
m-]A4m+3 m_1a4m+3 = - [(1-2v)(2m + 7)(2m + f)

9The terms with subscripts of the form 4m+1 are given in Part
1 of the group (B).
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2(1-v)(2m - 3)*1[(1-2v) (4n-7+8v) e

4m-1
7, () (i)
+ (2m + 3) m_]Y4m+1_+ (1-2v) m_]o‘llm-l:|
1 3 (),
- »(4m-3+8v)(2m - 5) [(1-2v)(4m+5-8v) Cam-1
5. (1) (i)
+ (2m - 7) m;]v4m+1 + (1-2v) m_164m—1]’
(1) 5 1,
m-184me3 Bames = - [201-v)(2m + 5)(2m + 5) (38)
3.2 (1)
- (1-2v)(2m - §) J0(1-2v) (4m+5-8v) sz_]

5, (1) (1)
v(em - g) vapmey 07200 g

1 3 (1,
+ 7(4m+9-8v)(2m - 7) [(1-29)(4m—7+8v) C4m-1

(1) (i)

1
+ (2m + 3) Y + (1-2v) ape 11>
3 2 5,2 (1)
(1-2v)[(2m + 5) - (2m - 3) ] _,Yam3
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and

(1)

“4m+3 T

(1)

B |-
m 4m+3

4(4m+1)(

(1)

3, ‘' 5
- (2m + 3) oy + (2m - %) B!
A dm+1 2 m-1 4dm+1]
2(] ) (i) )
- -v Y .
m-1 4m-1
) 2(1-2v) (1) |
g3 b Paper Y AT Baprds
(1)
m %4m+3°
(i) (i)
1-2v) Yaps3 = 8(4m+1)(1-2v) Came1 (39)
m
(i) (i)
- 4(1-v) Adp-q - (4m+3) % gt
m
(i)
+ (4m-1) Bl'lm+]'
m

Finally, those terms for k=0,1,2,---, m-2 when m>2 are deter-

mined:

(
k2am+3

i)
k

(1)

] .
K Am+1

- 3(4m-3+8v) (2k + 1) [2k + 1)

*Am+3 T
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k2am+3

(1)

 (1-29) Ty ] - LO-29) (2 s 2z + )
| (i)
- 201-9)(2k + ) I0m + 3
(i) 1]
+ (1-2v) ) Opm-11>
(1) 1 1y rror 4 1y O,
o Bames T z(4mo-8v)(2k + g) L(2m * 2)  vapey
+ (1-2v)  Cagpq] - [201-9) (2m 4 3)(2m + )
» (1)
- (e29) 2k + P 10K+ ) i
(i)
+ (-"2\)) " Bam_]]s (40)

(i)

(1-2v) [(zm + 3)° - (2k - D1 Vamss

= - (2m +

3, (1), 1, ()
7)  Camer t (2k - ) o Pam+l
(i) .
Y .
k 4m"‘]

- 2(1-v)
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where

2(1-v)(1-2v) [(2m + g)z s 2k + %7 «x

k24m+3 T 2

2 2
x [(zm + 3)° - (2k + )1,
for k=0,1,2,---, m-1.

Equations (17) through (40) constitute a general
solution of the three-dimensional equations of linear elastic-
ity for the half-plane crack problem. The functions fn’ [
hg (n=0,1,2,---) may be put into equations (12) and (13) for
the determination of displacements and stresses at all inter-

esting points both near to and far from the edge of the crack.

THREE-DIMENSIONAL STRESS DISTRIBUTION

Having established the recurrence relations for the dis-
placement functions, it is in order to calculate the three-
dimensional stresses for each value of n in equations (13).

The fo]]owing notation will be adopted:

Q
-

]
e~ 8
Q
i
e~ 8

(oe)n, etc.

(0)9
r'n 0 0

n=o n

First, consider the case of n=0, where fo, 99 and h0 are given
by equations (15). Upon substitution of the appropriate stress

components into the free crack surface boundary conditions in
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equation (9), there results

Ay = Cy = 0, i=1,2 (41)

and hence equations (15) are simplified accordingly. These
considekations’]ead to the vanishing of all stresses for n=0,

i.e.,

)y = 0 (42)

(6,09 = (o) = === = (1,,),

Tor

For the purpose of illustrating the use of the.recurrence for-

mulas, stress solutions for n=1,2,3,4 will be worked out.

Even integers of n.

1. n=2. From equation (9), it is not difficult to show

that
(2) (2) ‘ (2) (1 1
A2 = - BO’ B2 = 0, C2 = (1-2v) 82
(1)
- v AO’ (43)
and thus
(1) (1) (-
f2 = BZ cos28 + (1-2v) 82 - v AO’
(1) (2)
9, = - 82 sin2s + C2,
(1) (2)
h2 = A2 co0sSH - B0 sing.
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It is apparent from equations (13) that for n=2, the stresses

are independent of r:

(1)
(cr)2 = B, (1 + cos2e),
(1)
(ge)2 = B2 (1 - cos2e),
(1) (1)
(02)2 = 2v 82 + (1+v) A6,
(1)
(Tre)z = - B, sin2e, (44)

, o
5 [ A, + Bo] sine,

(Tez)z

Lo
(Tzr)2 5 [ A, + Bé] C0sH.

]

2. n=4. Now, applying equations (41) and (43), the

gquantities in equations (18) become

(1) (1) L Dy e Ve
- a = 8 - 1 -2y n .
0 4 0 4 4 2 0
(@ @ @), (45)
o 4 0o 4 2V 0°
(i) (i)
(14 = '] 64 = 03
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and

(i)

OY4= 03

(1) 1 (1) (1) (2)
Jvas -z b By Al vy =0

These coefficients determine f,, g, and h, in equations (17)

which in turn give (09)4, (rre)4 and (Tez)4' The conditions

in equation (9) are thus satisfied by taking

(2) , (@ , (D)
A4 5 C C 5

B

LM M (@ (2)
'_2'[ Az + BO]: C = = B,.

el

This Teads to

(1) 1
A B, [cos3e + 3 (1-4v) cose]

—h
]

(2) (1)

+ B, [sin3e + (1-4v) sine] - ¢ [(1+2v) A}

(1) L@
+ (1-v) 88] cose + 7 v Ba sine,

_ (]) . -I .
94 = - By [sin3e - K3 (5-4v) sine]

-41-
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(2) : (1)
+ [cos3e - (5-4v) cose] + = [(1-2v) Al
4 6 2
(. 1 (2
+ (1+v) Bo] sine - 5 v By cose,
BNG) 2 G IS VI
h4 = A4 cos2e - i C5 §1n29 -5 L 82 + AO].
and therefore
-1 (1) 1
r (Gr)4 = 2 By (cos3e + 3 c0s9)
(2) _ , (M)
+ 2 By (sin3e + sine) - 3 [ Ay + BO] coso,
-1 _ (1)
r (06)4 = - 2 B4 (cos3s - cose)
(2)
-2 B4 (sin3e - 3sino),
-1 1 (]) (2) .
r (oz)4 = 8v [§ B4 cose + B, sins]
: m M
3 [(3+2v) A2 - v BOJ cos6
(2)
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-1 (1) . 1.
r (Tre)4 = - 2 B, (sin3s - 3 sineg)
(2) .
+ 2 B4 (cos3e - cose)
(1) (1)

+ % [ Ay + B sine,

-1 (1) 1 (1) . ] 1 (2) 1
r (Tez)4 = - [ A4 t 5 BZ] sin2e + 5 C2 (1 - cos2s),
/ (47)
-1 (1) 1 (1) . ; (2) o
r (Tzr)4 =[ A+ 3 B5] cos2e - % C; sin2e
(1) ' 1+ (1) )
- v By - Age

It is clear that all terms containing positive integer powers

of r remain finite as r-0.

0dd integers of n.

1. n=1. This portion of the solution will give rise to
singularities in the stresses. The vanishing of the stresses

at 6 = * 1 renders

1> G =-3 By (48)

from which it can be deduced that
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(1)

f] = B, [cos %ﬁ - (5-8v) cos %]
(2)
+ B, [sin %g - % (5-8v) sin %],
: (1)
g, = - By [sin 3% - (7-8v) sin ]
(2) ,
+ B [cos %ﬂ - % (7-8v) cos %],
(2) b
h] = A1 sin 5.

The stresses, which become unbounded at r=0, are found to be

(1)

r'/2(s); = % By (cos 3% - 5 cos &)
. % (2)81 (sin %ﬁ - % sin %),
20y -] (1)81 (cos 32 + 3 cos &)
- % (2)81 (sin'%g + sin %),
A CH PR [(1)31 cos § + g (2)81 sin 71,



r”z(fm)] = -1 By (sin %ﬂ + sin )

f]/z(Tez)

TN

1 A1 €os 3, (49)

1/2 _ 1 .8
r (Tzr)] =7 A] sin 7.

2. n=3. The relations necessary to meet the conditions in

equation (9) are

(1) 2 (m (1)
Ay = - Z(7-8v) B, Cy=- B,
(2) L@, @
C3=-5 By-915 A (50)

which may be used to give

(m
fq = B, [cos %3 + (3-8v) cos %]

(2)
+ By [sin %9 + % (3-8v) sin %]

2 (2) .0
15 (1+4v) Ai sin 3,
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93 =

(1)

® _ (9-8v) sin -g-]

50 1 0
B, [cos > -5 (9-8v) cos 7]

and the stresses

r—1/2

r—1/2

- B3 [sin %—
(2)
+
(2)
a4
- 15 (1-2v)
(1)
2 Bi
(2
)A3 sin %9 +
become
(1)
3
(op)3 = 7
. % (2)
(1)
3
(0g)3 = - 3
o3 (@
2

39

[- % (7-8v) cos 5— t cos %]

3

2)
2 ( . .8
B1 sin 7

o

8

B, (cos 5 + 3 cos %)

58

B3 (sin 5+ % sin %) -

9
B3 (cos 5 - 5 cos 7)

B3 (sin 5 - sin 7),
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1 (2) : .+ B
tE (5+4v) Aj sin 5s
-1/2 (1)
p1/ (Tre)3 - % By (sin gﬂ - sin %)
(2)
+ % 33 (cos %9 - § cos %)
(2)
- %ﬁ A} cos %, (51)
- (2) (1)
r ]/2(192)3 = % A, cos %ﬁ + (3-4v) . Bi (sin %ﬁ + sin %)
(2)
+ % Bi [cos %ﬂ - % (3-4v) cos %],
172 (1), 30 6
r (rzr)3 = - B [(3-4v) cos 5+ (1-4v) cos §]

2)
3 . 1 ( .30
+ 7 A3 sin 5=+ » Bi [sin >

(1-4v) sin %].

wir

The same procedure may be followed for the develop-
ment of the recurrence re]ations]o for the stress components.

loBecause of space limitation, these relationships will not be
given here, but will be reported in a subsequent communication.
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The coefficients

(i) (i)
n? Bn’ i=1,2; n=1,2,---

in equations (44), (47), (49) and (51) depend on the variable
z and they are to be determined from the Toading conditions

of the problem under consideration.

0f particular interest is the behavior of the stress
solution in the 1imit as the distance r tends to zero. The
terms that approach high, mathematically infinite, values at
r=0 are those shown in equations (49). In contrast to the two-
dimensional solution, all six components of the stress tensor
are present in the jmmediate vicinity of the crack front, and
they all vary as the iqverse square root of the radial distance
r. The coefficients (1)A], (1)81 (i=1,2), which vary along the
leading edge of the crack, may be physically interpretated as
quantities that reflect the redistfibution of the three-dimen-
sional stresses in a solid due to the introduction of a plane
crack. In fact, equations (49) represent the most general
stress state near the crack border and include the two-dimen-
sional problems of plane extensijon [8] and longitudinal shear

[13] as special cases:

1. Plane extension.

If the coefficients in equations (49) are inde-
pendent of z and such that
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then the two-dimensional problem of plane strain is recovered.
The parameters,k] and k2 [14] are known, respectively, as the
crack-tip stress-intensity factors for loads applied symmetri-

cally and skew-symmetrically with respect to the 1ine crack.

2. 'Longitudina1 Shear.

On the other hand, if

(2) (1) N
A1 = 2/2 k, = const., B, = 0, i=1,2

3 1
the stress state in equations (49) represent that of a crack
under anti-plane shear deformation and k3 is the corresponding

crack-tip stress-intensity factor.

It should be noted in passing that equations
(49) also display the three-dimensional character of the sin-
gular stresses interior to a thick plate containing a through
crack. On the surface layers, where the crack penetrates
through the plate, singularities of order different from r']/z
may exfst. Nevertheless, the present analysis does indicate
that the crack problem solution of Hartranft and Sih [15],

based on the Reissner's theory of plate bending, indeed pos-

sesses the correct functional relationship of the in-plane
-49-



stresses to r and 8 for values of ]z[<h/2, where z is the
thickness coordinate and h the plate thickness. For further
discussion of the thickness problem, the reader may refer to

the work of Sih et al [16].

WEDGE PROBLEMS IN THREE-DIMENSIONS

As mentioned earlier, the eigenfunction expansion method
outlined here may also be used for examining the three~dimen—
sional stress distribution near a V-shaped notch in an infinite
solid. Similar to the two-dimensional case [7], unbounded
stresses may occur for certain notch angles depending on the
boundary conditions specified on the radial edges of the notch.

The three possible combinations of boundary conditions are

1. Free-Free.

c. = T = 1 = 0, at 8 = ¢ @ (52)

<
1
<
1
=
1
o .
-
1]
“+
@
1
I+
Q

r 8 z (53)
3. Clamped-Free.
O = Togp = Toz = 0, at 8 = + ¢
(54)
U = Vg, = W, = 0, at 8 = - «a



The boundaries of the notch or wedge are described by
- 0<r<w, -g<f<a, -w<z<w,
To fix ideas, consider the case of free-free edges. The

six boundary conditions in equations (52) yield the same ex-

pressions as those in equations (10) provided = is replaced by

(1)
a. However, there results four sets of eigenvalues 2 (i=1,
m
2,--~, 4):
(1) (1)
sin 22 a = A sin 2a,
m m
(2) (2)
sin 2x o = - A sin 2a,
m m
(55)
(3)
ro=m(D),
m a
(4)
v o= () I
m o

where m=0,1,2,---. Note that the first two eigenequations in

equations (55) coincide with those obtained ?y>w1111a?s)[7] for
3 4 '

the planar analysis, while the eigenvalues and A corre-
m m

spond to those found by Sih [13] for the problem of a sector

cylinder under 1ongitudi?a; shear. In the three-dimensional
i

case, the four sets of 2a occur simultaneously. It follows
m .
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that the components of the displacement vector are given by

()
© o 4 AN _ .
Zpu = ] L] M (e,z; a(1)y,
(i)
e W g Apltn .
2u vy = ] ] ,Z] e V(ﬁ)(e,z; x(;)), (56)
m=o0 n=0 i=
(1)
2wy = 1L 1 (M (g,z; 2L1)),

For this problem, the stress components in equations (6) for

(1)

o' must be summed in i from one

each of the four eigenvalues 2

to four as it was done in equations (56) for the displacements.

The cases of clamped-clamped and clamped-free edges warrant

no further comments, since they may be treated in the same way.

CONCLUSIQONS

The eigenfunction expansion technique, used previously for
analyzing two-dimensional crack and wedge problems, has been
extended to the three-dimensional case. The three displacement
components valid everywhere in the infinite solid weakened by
a half-plane crack are derived in closed form. The pertinent
steps for finding the recurrence relations of the stress com-

ponents are also laid out in detail. In particular, the singu-
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lar behavior of the three-dimensional stress field near a

straight-edged crack is exhibited for the first time.

It is anticipated that further exploitation of the present

investigation will p?ogide a k?og1edge of the structure of the
i i

stress coefficients An and Bn for problems of half-plane

cracks opened by concentrated normal and shear forces.
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