251 research outputs found

    Multiple scattering of light in cold atomic clouds with a magnetic field

    Full text link
    Starting from a microscopic theory for atomic scatterers, we describe the scattering of light by a single atom and study the coherent propagation of light in a cold atomic cloud in the presence of a magnetic field B in the mesoscopic regime. Non-pertubative expressions in B are given for the magneto-optical effects and optical anisotropy. We then consider the multiple scattering regime and address the fate of the coherent backscattering (CBS) effect. We show that, for atoms with nonzero spin in their ground state, the CBS interference contrast can be increased compared to its value when B=0, a result at variance with classical samples. We validate our theoretical results by a quantitative comparison with experimental data.Comment: 16 pages, 7 figure

    Resolving the internal magnetic structure of the solar network

    Full text link
    We analyze the spectral asymmetry of Stokes V (circularly polarized) profiles of an individual network patch in the quiet Sun observed by Sunrise/IMaX. At a spatial resolution of 0.15"-0.18", the network elements contain substructure which is revealed by the spatial distribution of Stokes V asymmetries. The area asymmetry between the red and blue lobes of Stokes V increases from nearly zero at the core of the structure to values close to unity at its edges (one-lobed profiles). Such a distribution of the area asymmetry is consistent with magnetic fields expanding with height, i.e., an expanding magnetic canopy (which is required to fulfill pressure balance and flux conservation in the solar atmosphere). Inversion of the Stokes I and V profiles of the patch confirms this picture, revealing a decreasing field strength and increasing height of the canopy base from the core to the periphery of the network patch. However, the non-roundish shape of the structure and the presence of negative area and amplitude asymmetries reveal that the scenario is more complex than a canonical flux tube expanding with height surrounded by downflows.Comment: accepted for publication in ApJ Letter

    Magnetic Field Enhanced Coherence Length in Cold Atomic Gases

    Get PDF
    We study the effect of an external magnetic field on coherent backscattering of light from a cool rubidium vapor. We observe that the backscattering enhancement factor can be {\it increased} with BB. This surprising behavior shows that the coherence length of the system can be increased by applying a magnetic field, in sharp contrast with ususal situations. This is mainly due to the lifting of the degeneracy between Zeeman sublevels. We find good agreement between our experimental data and a full Monte-Carlosimulation, taking into account the magneto-optical effects and the geometry of the atomic cloud

    Photonic Hall effect in cold atomic clouds

    Full text link
    On the basis of exact numerical simulations and analytical calculations, we describe qualitatively and quantitatively the interference processes at the origin of the photonic Hall effect for resonant Rayleigh (point-dipole) scatterers in a magnetic field. For resonant incoming light, the induced giant magneto-optical effects result in relative Hall currents in the percent range, three orders of magnitude larger than with classical scatterers. This suggests that the observation of the photonic Hall effect in cold atomic vapors is within experimental reach.Comment: 4 pages 4 figure

    Opposite magnetic polarity of two photospheric lines in single spectrum of the quiet Sun

    Full text link
    We study the structure of the photospheric magnetic field of the quiet Sun by investigating weak spectro-polarimetric signals. We took a sequence of Stokes spectra of the Fe I 630.15 nm and 630.25 nm lines in a region of quiet Sun near the disk center, using the POLIS spectro-polarimeter at the German VTT on Tenerife. The line cores of these two lines form at different heights in the atmosphere. The 3σ\sigma noise level of the data is about 1.8 ×103Ic\times 10^{-3} I_{c}. We present co-temporal and co-spatial Stokes-VV profiles of the Fe I 630 nm line pair, where the two lines show opposite polarities in a single spectrum. We compute synthetic line profiles and reproduce these spectra with a two-component model atmosphere: a non-magnetic component and a magnetic component. The magnetic component consists of two magnetic layers with opposite polarity: the upper one moves upwards while the lower one moves downward. In-between, there is a region of enhanced temperature. The Stokes-VV line pair of opposite polarity in a single spectrum can be understood as a magnetic reconnection event in the solar photosphere. We demonstrate that such a scenario is realistic, but the solution may not be unique.Comment: 4 pages, 5 figures, accepted in Astronomy & Astrophysics Letter

    Localization of Matter Waves in 2D-Disordered Optical Potentials

    Full text link
    We consider ultracold atoms in 2D-disordered optical potentials and calculate microscopic quantities characterizing matter wave quantum transport in the non-interacting regime. We derive the diffusion constant as function of all relevant microscopic parameters and show that coherent multiple scattering induces significant weak localization effects. In particular, we find that even the strong localization regime is accessible with current experimental techniques and calculate the corresponding localization length.Comment: 4 pages, 3 figures, figures changed, references update

    Are there optical differences between storm-time substorms and isolated substorms?

    Get PDF
    We have performed an extensive analysis of auroral optical events (substorms) that occurred during the development of the main phase of magnetic storms. Using images from the Earth Camera on the Polar spacecraft (Frank et al., 1995), we compared the optical emission features of substorms occurring during 16 expansion phases of magnetic storms with the features of isolated substorms occurring during non-storm times. The comparison used two techniques, visual inspection and statistical comparisons. The comparisons were based on the common characteristics seen in isolated substorms that were initially identified by Akasofu (1964) and quantified by Gjerloev et al. (2008). We find that when auroral activity does occur during main phase development the characteristics of the aurora are very dissimilar to those of the classical isolated substorm. The primary differences include the lack of a surge/bulge, lack of bifurcation of the aurora, much shorter expansion phases, and greater intensities. <br><br> Since a surge/bulge and bifurcation of the aurora are characteristics of the existence of a substorm current wedge, a key component of the magnetosphere-ionosphere current system during substorms, the lack of this component would indicate that the classical substorm model does not apply to the storm time magnetosphere-ionosphere current system. Rather several of the analyses suggest that the storm-time substorms are associated more closely with the auroral oval, at least spatially, and, therefore, probably with the plasma sheet dynamics during the main phase development. These results then must call into question the widely held assumption that there is no intrinsic difference between storm-time substorms and classical isolated substorms

    On the Doppler Shift and Asymmetry of Stokes Profiles of Photospheric FeI and Chromospheric MgI Lines

    Full text link
    We analyzed the full Stokes spectra using simultaneous measurements of the photospheric (FeI 630.15 and 630.25 nm) and chromospheric (MgI b2 517.27 nm) lines. The data were obtained with the HAO/NSO Advanced Stokes Polarimeter, about a near disc center sunspot region, NOAA AR 9661. We compare the characteristics of Stokes profiles in terms of Doppler shifts and asymmetries among the three spectral lines, which helps us to better understand the chromospheric lines and the magnetic and flow fields in different magnetic regions. The main results are: (1) For penumbral area observed by the photospheric FeI lines, Doppler velocities derived from Stokes I (Vi) are very close to those derived from linear polarization profiles (Vlp) but significantly different from those derived from Stokes V profiles (Vzc), which provides direct and strong evidence that the penumbral Evershed flows are magnetized and mainly carried by the horizontal magnetic component. (2) The rudimentary inverse Evershed effect observed by the MgI b2 line provides a qualitative evidence on its formation height that is around or just above the temperature minimum region. (3) Vzc and Vlp in penumbrae and Vzc in pores generally approach their Vi observed by the chromospheric MgI line, which is not the case for the photospheric FeI lines. (4) Outer penumbrae and pores show similar behavior of the Stokes V asymmetries that tend to change from positive values in the photosphere (FeI lines) to negative values in the low chromosphere (MgI line). (5) The Stokes V profiles in plage regions are highly asymmetric in the photosphere and more symmetric in the low chromosphere. (6) Strong red shifts and large asymmetries are found around the magnetic polarity inversion line within the common penumbra of the Delta spot. This study thus emphasizes the importance of spectro-polarimetry using chromospheric lines.Comment: 10 pages, 7 figures, accepted to The Astrophysical Journa
    corecore