1,558 research outputs found

    Spontaneous and Superfluid Chiral Edge States in Exciton-Polariton Condensates

    Full text link
    We present a scheme of interaction-induced topological bandstructures based on the spin anisotropy of exciton-polaritons in semiconductor microcavities. We predict theoretically that this scheme allows the engineering of topological gaps, without requiring a magnetic field or strong spin-orbit interaction (transverse electric-transverse magnetic splitting). Under non-resonant pumping, we find that an initially topologically trivial system undergoes a topological transition upon the spontaneous breaking of phase symmetry associated with polariton condensation. Under resonant coherent pumping, we find that it is also possible to engineer a topological dispersion that is linear in wavevector -- a property associated with polariton superfluidity.Comment: 6 pages, 4 figure

    Metal Cooling in Simulations of Cosmic Structure Formation

    Full text link
    The addition of metals to any gas can significantly alter its evolution by increasing the rate of radiative cooling. In star-forming environments, enhanced cooling can potentially lead to fragmentation and the formation of low-mass stars, where metal-free gas-clouds have been shown not to fragment. Adding metal cooling to numerical simulations has traditionally required a choice between speed and accuracy. We introduce a method that uses the sophisticated chemical network of the photoionization software, Cloudy, to include radiative cooling from a complete set of metals up to atomic number 30 (Zn) that can be used with large-scale three-dimensional hydrodynamic simulations. Our method is valid over an extremely large temperature range (10 K < T < 10^8 K), up to hydrogen number densities of 10^12 cm^-3. At this density, a sphere of 1 Msun has a radius of roughly 40 AU. We implement our method in the adaptive mesh refinement (AMR) hydrodynamic/N-body code, Enzo. Using cooling rates generated with this method, we study the physical conditions that led to the transition from Population III to Population II star formation. While C, O, Fe, and Si have been previously shown to make the strongest contribution to the cooling in low-metallicity gas, we find that up to 40% of the metal cooling comes from fine-structure emission by S, when solar abundance patterns are present. At metallicities, Z > 10^-4 Zsun, regions of density and temperature exist where gas is both thermally unstable and has a cooling time less than its dynamical time. We identify these doubly unstable regions as the most inducive to fragmentation. At high redshifts, the CMB inhibits efficient cooling at low temperatures and, thus, reduces the size of the doubly unstable regions, making fragmentation more difficult.Comment: 19 pages, 12 figures, significant revision, including new figure

    Effects of halothane and isoflurane anaesthesia on microcirculatory blood flow in musculocutaneous flaps

    Get PDF
    Hypoperfusion and necrosis in musculocutaneous flaps used for reconstruction of tissue defects is still a significant clinical problem. Although the causes of hypoperfusion are frequently surgical in nature, little is known about the effects of anaesthetic management on blood flow in flaps or the outcome of flap surgery. We compared in minipigs the effects of halothane and isoflurane anaesthesia in equipotent doses on microcirculatory blood flow (MBF) in the skin and muscle part of musculocutaneous flaps and also in intact (control) skin and muscle. Measurements were made during stable normovolaemic conditions and during mild to moderate hypovolaemia (withdrawal of 5%, 10% and 15% of total blood volume). Multi-channel laser Doppler flowmetry (LDF) was used to measure MBF and electromagnetic flowmetry (EMF) for total flap blood flow. During normovolaemic conditions there was no significant difference between the two groups in central haemodynamic or respiratory data. After 15% blood loss, however, there was a significant decrease in mean arterial pressure and cardiac output in the halothane group while there was no significant change in the isoflurane group (P < 0.05). MBF in control skin, control muscle and flap muscle remained approximately 10−15% higher in the isoflurane than in the halothane group throughout the study. In the isoflurane group, MBF in flap skin was unchanged during normovolaemia and there was less than 10% decrease during hypovolaemia. In the halothane group hypovolaemia caused a significant decrease in MBF in flap skin: 27% decrease after 5% blood loss, 45% decrease after 10% blood loss and 49% decrease after 15% blood loss compared with 5%, 20% and 21%, respectively, in intact skin. We conclude that during normovolaemic conditions MBF was well maintained in musculocutaneous flaps in minipigs both with halothane and isoflurane anaesthesia; however, during mild to moderate hypovolemia MBF decreased markedly in flap skin with halothane anaesthesia while it remained unchanged with isofluran

    Geology of Tindfjallajökull volcano, Iceland

    Get PDF
    The geology of Tindfjallajökull volcano, southern Iceland, is presented as a 1:50,000 scale map. Field mapping was carried out with a focus on indicators of past environments. A broad stratocone of interbedded fragmental rocks and lavas was constructed during Tindfjallajökull’s early development. This stratocone has been dissected by glacial erosion and overlain by a variety of mafic to silicic volcanic landforms. Eruption of silicic magma, which probably occurred subglacially, constructed a thick pile of breccia and lava lobes in the summit area. Mafic to intermediate flank eruptions continued through to the end of the last glacial period, producing lavas, hyaloclastite-dominated units and tuyas that preserve evidence of volcano-ice interactions. The Thórsmörk Ignimbrite, a regionally important chronostratigraphic marker, is present on the SE flank of the volcano. The geological mapping of Tindfjallajökull gives insights into the evolution of stratovolcanoes in glaciated regions and the influence of ice in their development

    The Triple Pulsar System PSR B1620-26 in M4

    Get PDF
    The millisecond pulsar PSR B1620-26, in the globular cluster M4, has a white dwarf companion in a half-year orbit. Anomalously large variations in the pulsar's apparent spin-down rate have suggested the presence of a second companion in a much wider orbit. Using timing observations made on more than seven hundred days spanning eleven years, we confirm this anomalous timing behavior. We explicitly demonstrate, for the first time, that a timing model consisting of the sum of two non-interacting Keplerian orbits can account for the observed signal. Both circular and elliptical orbits are allowed, although highly eccentric orbits require improbable orbital geometries. The motion of the pulsar in the inner orbit is very nearly a Keplerian ellipse, but the tidal effects of the outer companion cause variations in the orbital elements. We have measured the change in the projected semi-major axis of the orbit, which is dominated by precession-driven changes in the orbital inclination. This measurement, along with limits on the rate of change of other orbital elements, can be used to significantly restrict the properties of the outer orbit. We find that the second companion most likely has a mass m~0.01 Msun --- it is almost certainly below the hydrogen burning limit (m<0.036 Msun, 95% confidence) --- and has a current distance from the binary of ~35 AU and orbital period of order one hundred years. Circular (and near-circular) orbits are allowed only if the pulsar magnetic field is ~3x10^9 G, an order of magnitude higher than a typical millisecond pulsar field strength. In this case, the companion has mass m~1.2x10^-3 Msun and orbital period ~62 years.Comment: 12 pages, 6 figures, 3 tables. Very minor clarifications and rewording. Accepted for publication in the Astrophys.

    Prediction of the haemodynamic response to tracheal intubation: comparison of laser-Doppler skin vasomotor reflex and pulse wave reflex

    Get PDF
    Background. The laser-Doppler skin vasomotor reflex (SVmR) caused by tetanic stimulation of the ulnar nerve may be a test that can predict the haemodynamic response to tracheal intubation. A decrease in pulse wave amplitude (pulse wave reflex, PWR) may be an alternative index of this response. We compared the abilities of PWR and SVmR to predict the haemodynamic response to tracheal intubation and studied how alfentanil, muscle relaxation, stimulation site and stimulation pattern affected the two reflexes. Methods. Anaesthesia was induced and maintained with 2% sevoflurane and 50% nitrous oxide in two groups of 10 ASA status I patients. Tetanic stimuli were applied to the flexor muscles of the forearm and the ulnar nerve before and after administration of vecuronium. The change in skin blood flow (laser-Doppler) and pulse wave amplitude (pulse oximetry) after a 5 and 10 s stimulation was measured on the opposite hand. If skin blood flow (laser-Doppler) decreased by more than 10%, a computer-controlled infusion of alfentanil was started and the target plasma concentration was increased in steps until this response was suppressed (<10%). The trachea was intubated and arterial pressure and heart rate responses were recorded. Plasma alfentanil concentration was measured. Results. When PWR and SVmR were suppressed, the haemodynamic response to tracheal intubation was reduced in 100 and 53% of patients respectively. PWR and SVmR responses decreased with increasing plasma alfentanil concentration. The SVmR response to muscle stimulation was reduced by muscle relaxants. The pulse wave response to both muscle and neural stimulation was reduced by relaxants. The responses to 5 and 10 s stimulations were similar. Conclusion. An absent SVmR does not predict a blunted arterial pressure or heart rate response to tracheal intubation. The PWR may be a better predicto

    Imminent risk of fracture after fracture

    Get PDF
    Summary The risk of major osteoporotic fracture (MOF) after a first MOF is increased over the whole duration of follow-up, but the imminent risk is even higher. If the acute increment in risk in the few years following MOF is amenable to therapeutic intervention, then immediate short-term treatments may provide worthwhile clinical dividends in a very cost-effective manner. Introduction A history of fracture is a strong risk factor for future fractures. The aim of the present study was to determine whether the predictive value of a past MOF for future MOF changed with time. Methods The study was based on a population-based cohort of 18,872 men and women born between 1907 and 1935. Fractures were documented over 510,265 person-years. An extension of Poisson regression was used to investigate the relationship between the first MOF and the second. All associations were adjusted for age and time since baseline. Results Five thousand thirty-nine individuals sustained one or more MOFs, of whom 1919 experienced a second MOF. The risk of a second MOF after a first increased by 4% for each year of age (95% CI 1.02–1.06) and was 41% higher for women than men (95% CI 1.25–1.59). The risk of a second MOF was highest immediately after the first fracture and thereafter decreased with time though remained higher than the population risk throughout follow-up. For example, 1 year after the first MOF, the risk of a second fracture was 2.7 (2.4–3.0) fold higher than the population risk. After 10 years, this risk ratio was 1.4 (1.2–1.6). The effect was more marked with increasing age. Conclusions The risk of MOF after a first MOF is increased over the whole follow-up, but the imminent risk is even higher. If the acute increment in risk in the few years following MOF is amenable to therapeutic intervention, then immediate short-term treatments may provide worthwhile clinical dividends in a very cost-effective manner, particularly in the elderly

    Gravity and elevation changes at Askja, Iceland

    Get PDF
    Ground tilt measurements demonstrate that Askja is in a state of unrest, and that in the period 1988 - 1991 a maximum 48 +/- 3 µrad tilt occurred down towards the centre of the caldera. This is consistent with 126 mm of deflation at the centre of the caldera with a 2.5 - 3.0 km depth to the source of deformation. The volume of the subsidence bowl is 6.2 x 106 m3. When combined with high precision microgravity measurements, the overall change in sub-surface mass may be quantified. After correction for the observed elevation change using the free air gradient of gravity measured for each station, the total change in mass is estimated to be less than 109 kg. A small residual ground inflation and net gravity increase in the eastern part of the caldera may be caused by dyke intrusion in this region. The minimum dimensions of such an intrusion or complex of intrusions are 1m width, up to 100m deep and up to several hundred metres thick
    corecore