23 research outputs found

    The WEBT BL Lacertae Campaign 2001 and its extension : Optical light curves and colour analysis 1994–2002

    Get PDF
    BL Lacertae has been the target of four observing campaigns by the Whole Earth Blazar Telescope (WEBT) collaboration. In this paper we present UBVRI light curves obtained by theWEBT from 1994 to 2002, including the last, extended BL Lac 2001 campaign. A total of about 7500 optical observations performed by 31 telescopes from Japan to Mexico have been collected, to be added to the ∼15 600 observations of the BL Lac Campaign 2000. All these data allow one to follow the source optical emission behaviour with unprecedented detail. The analysis of the colour indices reveals that the flux variability can be interpreted in terms of two components: longer-term variations occurring on a fewday time scale appear as mildly-chromatic events, while a strong bluer-when-brighter chromatism characterizes very fast (intraday) flares. By decoupling the two components, we quantify the degree of chromatism inferring that longer-term flux changes imply moving along a ∼0.1 bluerwhen- brighter slope in the B − R versus R plane; a steeper slope of ∼0.4 would distinguish the shorter-term variations. This means that, when considering the long-term trend, the B-band flux level is related to the R-band one according to a power law of index ∼1.1. Doppler factor variations on a “convex” spectrum could be the mechanism accounting for both the long-term variations and their slight chromatism.Reig Torres, Pablo, [email protected]

    The correlated optical and radio variability of BL Lacertae - WEBT data analysis 1994-2005

    Get PDF
    Since 1997, BL Lacertae has undergone a phase of high optical activity, with the occurrence of several prominent outbursts. Starting from 1999, the Whole Earth Blazar Telescope (WEBT) consortium has organized various multifrequency campaigns on this blazar, collecting tens of thousands of data points. One of the main issues in the study of this huge dataset has been the search for correlations between the optical and radio flux variations, and for possible periodicities in the light curves. The analysis of the data assembled during the first four campaigns (comprising also archival data to cover the period 1968-2003) revealed a fair optical-radio correlation in 1994-2003, with a delay of the hard radio events of ~100 days. Moreover, various statistical methods suggested the existence of a radio periodicity of ~8 years. In 2004 the WEBT started a new campaign to extend the dataset to the most recent observing seasons, in order to possibly confirm and better understand the previous results. In this campaign we have collected and assembled about 11000 new optical observations from twenty telescopes, plus near-IR and radio data at various frequencies. Here, we perform a correlation analysis on the long-term R-band and radio light curves. In general, we confirm the ~100-day delay of the hard radio events with respect to the optical ones, even if longer (~200-300 days) time lags are also found in particular periods. The radio quasi-periodicity is confirmed too, but the "period" seems to progressively lengthen from 7.4 to 9.3 years in the last three cycles. The optical and radio behaviour in the last forty years suggests a scenario where geometric effects play a major role. In particular, the alternation of enhanced and suppressed optical activity (accompanied by hard and soft radio events, respectively) ca

    Multifrequency variability of the blazar AO 0235+164 the WEBT campaign in 2004-2005 and long-term SED analysis

    Get PDF
    A huge multiwavelength campaign targeting the blazar AO 0235+164 was organized by the Whole Earth Blazar Telescope (WEBT) in 2003-2005 to study the variability properties of the source. Monitoring observations were carried out at cm and mm wavelengths, and in the near-IR and optical bands, while three pointings by the XMM-Newton satellite provided information on the X-ray and UV emission. We present the data acquired during the second observing season, 2004-2005, by 27 radio-to-optical telescopes. They reveal an increased near-IR and optical activity with respect to the previous season. Increased variability is also found at the higher radio frequencies, down to 15 GHz, but not at the lower ones. The radio (and optical) outburst predicted to peak around February-March 2004 on the basis of the previously observed 5-6 yr quasi-periodicity did not occur. The analysis of the optical light curves reveals now a longer characteristic time scale of 8 yr, which is also present in the radio data. The spectral energy distributions corresponding to the XMM-Newton observations performed during the WEBT campaign are compared with those pertaining to previous pointings of X-ray satellites. Bright, soft X-ray spectra can be described in terms of an extra component, which appears also when the source is faint through a hard UV spectrum and a curvature of the X-ray spectrum. Finally, there might be a correlation between the X-ray and optical bright states with a long time delay of about 5 yr, which would require a geometrical interpretation

    The high activity of 3C 454.3 in autumn 2007: Monitoring by the WEBT during the AGILE detection

    Get PDF
    The quasar-type blazar 3C 454.3 underwent a phase of high activity in summer and autumn 2007, which was intensively monitored in the radio-to-optical bands by the Whole Earth Blazar Telescope (WEBT). The gamma-ray satellite AGILE detected this source first in late July, and then in November-December 2007. In this letter we present the multifrequency data collected by the WEBT and collaborators during the second AGILE observing period, complemented by a few contemporaneous data from UVOT onboard the Swift satellite. The aim is to trace in detail the behaviour of the synchrotron emission from the blazar jet, and to investigate the contribution from the thermal emission component. Optical data from about twenty telescopes have been homogeneously calibrated and carefully assembled to construct an R-band light curve containing about 1340 data points in 42 days. This extremely well-sampled optical light curve allows us to follow the dramatic flux variability of the source in detail. In addition, we show radio-to-UV spectral energy distributions (SEDs) at different epochs, which represent different brightness levels. In the considered period, the source varied by 2.6 mag in a couple of weeks in the R band. Many episodes of fast (i.e. intranight) variability were observed, most notably on December 12, when a flux increase of about 1.1 mag in 1.5 hours was detected, followed by a steep decrease of about 1.2 mag in 1 hour. The contribution by the thermal component is difficult to assess, due to the uncertainties in the Galactic, and possibly also intrinsic, extinction in the UV band. However, polynomial fitting of radio-to-UV SEDs reveals an increasing spectral bending going towards fainter states, suggesting a UV excess likely due to the thermal emission from the accretion disc

    The GASP-WEBT monitoring of 3C 454.3 during the 2008 optical-to-radio and γ-ray outburst

    Get PDF
    Since 2001, the radio quasar 3C 454.3 has undergone a period of high optical activity, culminating in the brightest optical state ever observed, during the 2004-2005 outburst. The Whole Earth Blazar Telescope (WEBT) consortium has carried out several multifrequency campaigns to follow the source behaviour. The GLAST-AGILE Support Program (GASP) was born from the WEBT to provide long-term continuous optical-to-radio monitoring of a sample of gamma-loud blazars, during the operation of the AGILE and GLAST (now known as Fermi GST) gamma-ray satellites. The main aim is to shed light on the mechanisms producing the high-energy radiation, through correlation analysis with the low-energy emission. Thus, since 2008 the monitoring task on 3C 454.3 passed from the WEBT to the GASP, while both AGILE and Fermi detected strong gamma-ray emission from the source. We present the main results obtained by the GASP at optical, mm, and radio frequencies in the 2008-2009 season, and compare them with the WEBT results from previous years. An optical outburst was observed to peak in mid July 2008, when Fermi detected the brightest gamma-ray levels. A contemporaneous mm outburst maintained its brightness for a longer time, until the cm emission also reached the maximum levels. The behaviour compared in the three bands suggests that the variable relative brightness of the different-frequency outbursts may be due to the changing orientation of a curved inhomogeneous jet. The optical light curve is very well sampled during the entire season, which is also well covered by the various AGILE and Fermi observing periods. The relevant cross-correlation studies will be very important in constraining high-energy emission models

    The complex variability of blazars: time-scales and periodicity analysis in S4 0954+65

    Full text link
    Among active galactic nuclei, blazars show extreme variability properties. We here investigate the case of the BL Lac object S4 0954+65 with data acquired in 2019–2020 by the Transiting Exoplanet Survey Satellite (TESS) and by the Whole Earth Blazar Telescope (WEBT) Collaboration. The 2-min cadence optical light curves provided by TESS during three observing sectors of nearly 1 month each allow us to study the fast variability in great detail. We identify several characteristic short-term time-scales, ranging from a few hours to a few days. However, these are not persistent, as they differ in the various TESS sectors. The long-term photometric and polarimetric optical and radio monitoring undertaken by the WEBT brings significant additional information, revealing that (i) in the optical, long-term flux changes are almost achromatic, while the short-term ones are strongly chromatic; (ii) the radio flux variations at 37 GHz follow those in the optical with a delay of about 3 weeks; (iii) the range of variation of the polarization degree and angle is much larger in the optical than in the radio band, but the mean polarization angles are similar; (iv) the optical long-term variability is characterized by a quasi-periodicity of about 1 month. We explain the source behaviour in terms of a rotating inhomogeneous helical jet, whose pitch angle can change in time.Accepted manuscrip

    The structure and emission model of the relativistic jet in the quasar 3C279 inferred from radio to high-energy γ-ray observations in 2008-2010

    Get PDF
    We present time-resolved broadband observations of the quasar 3C279 obtained from multi-wavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported γ-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears to be delayed with respect to the γ-ray emission by about 10days. X-ray observations reveal a pair of "isolated" flares separated by 90 days, with only weak γ-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the γ-ray flare, while the peak appears in the millimeter (mm)/submillimeter (sub-mm) band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broadband spectra during the γ-ray flaring event by a shift of its location from 1pc to 4pc from the central black hole. On the other hand, if the γ-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission. © 2012. The American Astronomical Society. All rights reserved.

    Multiwavelength behaviour of the blazar 3C 279: decade-long study from γ-ray to radio

    Get PDF
    We report the results of decade-long (2008–2018) γ-ray to 1 GHz radio monitoring of the blazar 3C 279, including GASP/WEBT, Fermi and Swift data, as well as polarimetric and spectroscopic data. The X-ray and γ-ray light curves correlate well, with no delay ≳ 3 h, implying general cospatiality of the emission regions. The γ-ray–optical flux–flux relation changes with activity state, ranging from a linear to a more complex dependence. The behaviour of the Stokes parameters at optical and radio wavelengths, including 43 GHz Very Long Baseline Array images, supports either a predominantly helical magnetic field or motion of the radiating plasma along a spiral path. Apparent speeds of emission knots range from 10 to 37c, with the highest values requiring bulk Lorentz factors close to those needed to explain γ-ray variability on very short time-scales. The Mg ii emission line flux in the ‘blue’ and ‘red’ wings correlates with the optical synchrotron continuum flux density, possibly providing a variable source of seed photons for inverse Compton scattering. In the radio bands, we find progressive delays of the most prominent light-curve maxima with decreasing frequency, as expected from the frequency dependence of the τ = 1 surface of synchrotron self-absorption. The global maximum in the 86 GHz light curve becomes less prominent at lower frequencies, while a local maximum, appearing in 2014, strengthens toward decreasing frequencies, becoming pronounced at ∼5 GHz. These tendencies suggest different Doppler boosting of stratified radio-emitting zones in the jet.First author draf

    The Great Markarian 421 Flare of 2010 February: Multiwavelength Variability and Correlation Studies

    Get PDF
    We report on variability and correlation studies using multiwavelength observations of the blazar Mrk 421 during the month of 2010 February, when an extraordinary flare reaching a level of ∼27 Crab Units above 1 TeV was measured in very high energy (VHE) γ-rays with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory. This is the highest flux state for Mrk 421 ever observed in VHE γ-rays. Data are analyzed from a coordinated campaign across multiple instruments, including VHE γ-ray (VERITAS, Major Atmospheric Gamma-ray Imaging Cherenkov), high-energy γ-ray (Fermi-LAT), X-ray (Swift, Rossi X-ray Timing Experiment, MAXI), optical (including the GASP-WEBT collaboration and polarization data), and radio (Metsahovi, Owens Valley Radio Observatory, University of Michigan Radio Astronomy Observatory). Light curves are produced spanning multiple days before and after the peak of the VHE flare, including over several flare "decline" epochs. The main flare statistics allow 2 minute time bins to be constructed in both the VHE and optical bands enabling a cross-correlation analysis that shows evidence for an optical lag of ∼25-55 minutes, the first time-lagged correlation between these bands reported on such short timescales. Limits on the Doppler factor (δ ⪆ 33) and the size of the emission region (δ-1RB≲ 3.8 × 1013cm) are obtained from the fast variability observed by VERITAS during the main flare. Analysis of 10 minute binned VHE and X-ray data over the decline epochs shows an extraordinary range of behavior in the flux-flux relationship, from linear to quadratic to lack of correlation to anticorrelation. Taken together, these detailed observations of an unprecedented flare seen in Mrk 421 are difficult to explain with the classic single-zone synchrotron self-Compton model.</p
    corecore