20 research outputs found

    Computational modeling of the mechanics of hierarchical materials

    Get PDF
    Structural hierarchy coupled with material heterogeneity is often identifi ed in natural materials, from the nano- to the macroscale. It combines disparate mechanical properties, such as strength and toughness, and multifunctionality, such as smart adhesion, water repellence, self-cleaning, and self-healing. Hierarchical architectures can be employed in synthetic bioinspired structured materials, also adopting constituents with superior mechanical properties, such as carbon nanotubes or graphene. Advanced computational modeling is essential to understand the complex mechanisms that couple material, structural, and topological hierarchy, merging phenomena of different nature, size, and time scales. Numerical modeling also allows extensive parametric studies for the optimization of material properties and arrangement, avoiding time-consuming and complex experimental trials, and providing guidance in the fabrication of novel advanced materials. Here, we review some of the most promising approaches, with a focus on the methods developed by our group

    Multilayer stag beetle elytra perform better under external loading via non-symmetric bending properties

    Get PDF
    FEM images showing the von-Mises stress distribution (unit of measure GPa) in the wing and the beetle body under a concentrated load of 0.5 N .A) real structure with void, B) elytra with no void

    Effect of material elastic properties and surface roughness on grip performances of ski boot soles under wet and icy conditions

    Get PDF
    A set of thermoplastic materials employed in soles for alpine skiing boots were characterized in terms of chemical composition, cristallinity, hardness, surface roughness, and grip. The results of friction experiments on different substrates reproducing the real environmental scenarios point out that materials provide more grip as they become softer. Moreover, higher roughness results in lower dynamic coefficient of friction (COF). Finite element simulations corroborate the experimental measures of COF and let to rationalize the role of material elasticity and surface roughness on the frictional characteristics of soles. The measure of grip on an inclined wet surface provides analogous results, indicating that COF can be used as key performance indicator in the design of ski-boot soles and of other anti-slip equipments in wet and icy environments

    Hierarchical self-entangled carbon nanotube tube networks

    Get PDF
    R.A. gratefully acknowledges partial project funding by the Deutsche Forschungsgemeinschaft (DFG) contract AD183-17-1 as well as in the framework of the GRK 2154 and FOR 1616, and support from the European Comission in the framework of the Graphene FET Flagship. N.M.P. is supported by the European Research Council ERC PoC 2015 SILKENE No. 693670 and by the European Commission H2020 under the Graphene FET Flagship (WP14 “Polymer Composites” No. 696656) and under the FET proactive (“Neurofibres” No. 732344). S.S. acknowledges financial support from SILKENE. This work was partly supported by the Leverhulme Trust project CARBTRIB to S.N.G. We acknowledge financial support by Land Schleswig Holstein within the funding program “Open Access Publikationsfonds”. Furthermore, we thank Heather Cavers for proofreading and correcting the manuscript

    Plastic collapse of cylindrical shell-plate periodic honeycombs under uniaxial compression: experimental and numerical analyses

    Get PDF
    This work was partially supported by the National Natural Science Foundation of China (NSFC) (Nos. 31300780, 11272091, and 11572087, 11572087) and the Fundamental Research Funds for the Central Universities (No. 2242016R30014). NMP is supported by the European Research Council (ERC StG Ideas 2011 BIHSNAM n. 279985, ERC PoC 2013 KNOTOUGH n. 632277, ERC PoC 2015 SILKENE n. 693670) and by the European Commission under the Graphene Flagship (WP "Nanocomposites", n. 696656). SS acknowledges support from BIHSNAM

    Friction and Adhesion of Different Structural Defects of Graphene

    Get PDF
    Graphene structural defects, namely edges, step-edges and wrinkles are susceptible to severe mechanical deformation and stresses under frictional operations. Applied forces cause deformation by folding, buckling, bending and tearing the defective sites of graphene, which lead to a remarkable decline in normal load and friction bearing capacity. In this work, we experimentally quantified the maximal normal and friction forces corresponding to the damage thresholds of the different investigated defects as well as their pull-out (adhesion) forces. Horizontal wrinkles (with respect to the basal plane, i.e. folded) sustained the highest normal load, up to 317 nN, during sliding, whereas for vertical (i.e. standing collapsed) wrinkles, step-edges and edges, the load bearing capacities are up to 113 nN, 74 nN and 63±5 nN, respectively. The related deformation mechanisms were also experimentally investigated by varying the normal load up to the initiation of the damage from the investigated defects and extended with the numerical results from Molecular Dynamics and Finite Element Method simulations

    Conversionless efficient and broadband laser light diffusers for high brightness illumination applications

    Get PDF
    Funder: Deutsche Forschungsgemeinschaft (German Research Foundation); doi: https://doi.org/10.13039/501100001659Abstract: Laser diodes are efficient light sources. However, state-of-the-art laser diode-based lighting systems rely on light-converting inorganic phosphor materials, which strongly limit the efficiency and lifetime, as well as achievable light output due to energy losses, saturation, thermal degradation, and low irradiance levels. Here, we demonstrate a macroscopically expanded, three-dimensional diffuser composed of interconnected hollow hexagonal boron nitride microtubes with nanoscopic wall-thickness, acting as an artificial solid fog, capable of withstanding ~10 times the irradiance level of remote phosphors. In contrast to phosphors, no light conversion is required as the diffuser relies solely on strong broadband (full visible range) lossless multiple light scattering events, enabled by a highly porous (>99.99%) non-absorbing nanoarchitecture, resulting in efficiencies of ~98%. This can unleash the potential of lasers for high-brightness lighting applications, such as automotive headlights, projection technology or lighting for large spaces

    Impact mechanics of multilayer composite armors: Analytical modeling, FEM numerical simulation, and ballistic experiments

    No full text
    An analytical model is developed to study the ballistic behavior of multilayer composite armors subjected to the high-velocity impact of projectiles with arbitrary angle of incidence, shape, size, and frictional characteristics. The thickness compaction resulting from the production process is also accounted for, quantifying the role of the curing pressure on the enhancement of the impact toughness of composite laminates. Finite element method simulations are used in a complementary manner to study damage and failure mechanisms within the targets. Both approaches are validated by extensive experimental ballistic tests on multilayer composite targets. The role of the layer stacking sequence is also investigated. It emerges that graded multilayer configurations yield higher toughness when the projectile penetrates plies with decreasing fracture strength. These results can explain common structural arrangements in biological armors as well as be exploited in the design and optimization of shielding structures against high-velocity projectiles
    corecore