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A numerical-experimental approach towards picomechanics and picotribology:
the case study of defective carbon nanotubes bundles
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We present a simulation study on the peeling of carbon nanotubes bundles interacting with a flat substrate,
represented by the back surface of an atomic force microscopy cantilever. A defected sample, acquired in situ
using a scanning electron microscope, was investigated under different peeling configurations by finite element
method simulations. The coupled computational-experimental analysis let to identify the position and the
entity of a structural defect by means of reverse image correlation problem. By exploiting this defective fibre
it was also possible to quantify, as indirect measure, the friction and adhesion forces between the bundle and
the substrate of few pN magnitude, otherwise difficult to measure with the resolution of currently available
instruments. The proposed approach can be useful to study the tribology-induced mechanical behaviour
of one-dimensional nanostructures as well as for real-time identification and monitoring of nanodefects for
industrial applications, such as nanoelectronics.
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I. INTRODUCTION

One dimensional (1D) nanostructures, such as car-
bon nanotubes (CNTs)1–3, possess outstanding mechan-
ical, electrical, chemical and thermal properties making
them ideal for their use in multifunctional advanced com-
posites for electronics, sensors, filters, and biomedicine.
Due to their large surface-volume ratio, interface in-
teractions play a fundamental role in their mechani-
cal and functional properties, and dynamics. Adhesion
properties of such bundles with various substrates have
been extensively investigated via combined theoretical-
experimental-computational approaches4–16. Prior stud-
ies have revealed that CNTs may possess a variety of
structural defects, e.g. Stone–Wales transformations17,
which are generated during either synthesis or post-
processing stages and substantially affect their structural
and mechanical properties18–20. The adhesion between
nanotubes and substrates combined with their slender-
ness may lead into severe transverse and buckling de-
formations21, possibly amplified by the presence of such
defects. This may impact their applications, such as the
performance of THz antennas22 or of nano heat pipes
for electronic systems23. Therefore, it is of paramount
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importance to understand the role of material and ge-
ometrical nonlinearities and to study the actual CNTs
behaviour in non-ideal configurations which, however, re-
mains largely unexplored.

The difficulties in studying such systems are due to the
technical challenge in the simultaneous high-resolution
measurement of the peeling deformation of microscale in-
teracting structures and the corresponding peeling force
of few pN with adequate spatial and force resolutions.
These are mainly limited by capabilities of currently
available experimental measurement devices and the mis-
match between the size scale of the manipulated object
and the characteristic scale of interacting surfaces. In-
deed, such measurements have been reported so far by
few research groups in the world14. Computational atom-
istic modeling has been also used to describe the ad-
hesive behaviour of carbon nanotubes over various sub-
strates14,16, but while it is suitable to understand the
origin and nature of adhesive interactions, it cannot be
used to directly correlate the effect of tribological in-
teraction to the microscopic deformation of the bundle
alone or within a more complex architecture. Such mod-
els are also relatively time consuming, limited in the size
and time scales of the system that can be modeled, and
cannot be exploited for image correlation techniques on
microscopic samples. Continuum analytical and finite
element method (FEM) models have been extensively
used to model the bending, peeling, and buckling be-
haviour of such nanostructures21,24 but, to the best of
authors’ knowledge, there are no specific exploitation for
indirect defect characterization and estimation of tribo-
logical properties.

In this paper we present a coupled computational-
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experimental approach to derive the structural and tri-
bological properties of a defective CNTs bundle. The
procedure was successfully used to interpret the results
of a prior peeling study25 on the same bundle interacting
with a flat substrate represented by the back surface of
an atomic force microscopy (AFM) cantilever probe in-
side a scanning electron microscope (SEM). Thanks to
finite element method (FEM) simulations and exploiting
the defective nature of the bundle, we were able derive
information on the tribological properties of the bundle,
which consist of few-pN magnitude forces, otherwise dif-
ficult to be directly measured due to the resolution limits
of current instrumentation. The proposed model and al-
gorithm may be useful to study the tribology-induced
mechanical behaviour of 1D nanostructures as well as for
real-time identification and monitoring, via machine vi-
sion systems26,27, of defects in nanofibres for industrial
applications.

II. MATERIALS AND METHODS

A. In situ SEM geometry acquisition and nanomechanical
peeling experiments

The CNTs fibre used in this study was prepared by us-
ing chemical vapor deposition (CVD) synthesized single-
walled CNTs that were original grown on a silicon wafer.
Thin-bundled CNTs were formed when they were trans-
ferred to copper transmission electron microscope (TEM)
grids. Prior characterization by high resolution trans-
mission electron microscopy (HRTEM)24,28 has shown
that these thin CNTs fibres are composed of parallel and
tightly bound individual CNTs.

The adopted experimental setup is illustrated in Fig-
ure 1(a). The nanomechanical peeling measurements
were performed in situ inside a high resolution SEM (FEI
Nanolab 600)29. The tested CNTs fibre was mounted on
a nanomanipulator, used for moving it in various peel-
ing configurations. Electron beam induced deposition
(EBID) of carbon was used to enhance the attachment of
the CNTs fibre to the nanomanipulation probe. Silicon
AFM cantilevers (CSG 01, NT-MDT) with a 5 nm gold
(Au) coating on their back surfaces were employed and
mounted vertically on the SEM stage. The AFM can-
tilevers have a nominal spring constant of 0.03 N/m and
a width of 30 µm. The spring constant of each employed
AFM cantilevers was calibrated using thermal tuning
methods. The actual spring constant of the cantilever
used in this test was 0.064 N/m. However, due to the
much higher elastic transverse compliance of the bun-
dle, the deformation of the cantilever is much smaller
than the deformation of the fibre and can be neglected.
From the recorded high resolution SEM images, the over-
all length of the CNTs fibre (AB) was measured to be
about 28.05 µm, while the length from the control point
on the manipulator and the right-side free end (segment
OB) was of 20.50 µm. These quantities were verified from

 

FIG. 1. (a) SEM image used for the acquisition of the refer-
ence geometry of the bundle (undeformed state) and detail of
the FEM model at the defect location. (b) The experimental
final position of the bundle after peeling is depicted with the
static scheme adopted in FEM simulations. The red line is
the simulation-derived deformed shape without the presence
of the defect (d = D = 45 nm) and assumption of no friction
force (H = 0) at the contact point with the AFM cantilever.
In situ SEM images reproduced with permission from Ref.25.

various experimental images reproducing other deformed
states25 (see Supplementary Figure S1), thus excluding
tilt artifacts.

The geometry of the fibre was acquired via a CAD
software from the in situ SEM images. A slope discon-
tinuity in the elastica was observed in the pull-out AFM
experiments (point C), confirming that the peeling con-
figuration was not compatible with the deformation of
a defect-free structure, thus suggesting the presence of
a structural imperfection (Figure 1(b)). The position of
the defect along the bundle was identified by analyzing
the first derivative of the piecewise function f(x) which
describes the geometry of the fibre and corresponds to
the maximum jump in the slope function f ′(x) = df

dx in
the deformed part of the fibre (see Figure S2 in the Sup-
plementary Material for details).
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B. FEM model and computational procedure

The acquired geometry from the SEM images was sam-
pled with segments of length l=75 nm, overall resulting
in 374 beam elements. The same discretization, which
ensured a sufficiently smooth line, was used also for the
numerical model in order to have the same nodal coordi-
nates for image correlation technique. The element for-
mulation used in the model is a Hughes-Liu formulation30

which is suitable for such low aspect ratios (l/D=1.6:1).
Such discretization was demonstrated to ensure conver-
gence in terms of deformed shape and peeling forces in
various configurations25. An implicit scheme was used
for solving the model (total simulated time 4 s, timestep
∆t= 10 ms). According to our previous measurements
on similar bundles21, the cross-section was assumed cir-
cular with diameter D=45 nm and the Young’s modu-
lus E = 197 GPa. The defect was modeled with a re-
duced cross-section with d < D for two beam elements
adjacent to the node identified as defect location (Fig-
ure 1(a)). Thus, the simulated length of the defect was
ldef = 150 nm, and can be considered as punctual if com-
pared to the overall bundle length.

Figure 1(b) shows the geometry of the bundle after
peeling experiment together with the structural scheme
adopted in the numerical simulations. The bundle is
fully clamped to the probe (point O) and no relative dis-
placements and rotations are allowed there. The probe
is moved up of an imposed displacement ηO= [0, 0,
7.43] µm, determined from image acquisitions (the sign
of displacements refers to the positive direction of coordi-
nate axes, see Supplementary Figure S1 and Video S1 for
the sequence of the entire peeling process). The restraint
at contact point with the AFM (point B) was modeled
as a horizontal slider. In addition to the vertical force V
that arises at the restrain, namely adhesion, an horizontal
force H was introduced at this stage to simulate friction
that prevents the elastic return of the bundle causing the
experimentally observed deformed shape, which would
be otherwise impossible to obtain with just the vertical
reaction, as can be seen from the simulation depicted in
Figure 1(b) with H = 0.

To determine the magnitude of the contact forces and
the entity of the structural defect, the carried analysis
aimed at minimizing the average nodal distance m be-
tween the deformed geometry obtained from FEM sim-
ulations and experiments in the final equilibrium config-
uration. Thus, the estimate of the defect diameter was
obtained as follows:

d∗ = arg min

{
m

D
=

1

ND

N∑
i=1

√
∆xi

2 + ∆zi
2

}
(1)

where N = 273 is the number of nodes used to sample
the portion of the bundle actually subjected to defor-
mation (segment OB), ∆xi and ∆zi are the differences
between the components of the FEM computed and the

experimental coordinates of each node. The out-of-plane
(y direction) displacements were neglected because of the
high-precision control of the probe, which resulted in no
measurable difference in bundle length between peeling
and rest configuration. The procedure adopted in the
simulation to compute the defect entity and of interac-
tion forces was based on the following steps:

1. a tentative cross-section diameter d ≤ 45 nm is as-
sumed at the determined defect site;

2. the value of H that makes the experimental and
simulation coordinates of point B at peeling equi-
librium to overlap (tolerance of ±5 nm) is computed
iteratively;

3. the corresponding vertical reaction V at point B
and the normalized deviation m/D are computed
for the identified equilibrium configuration;

4. the procedure 1-3 is repeated for different values of
d ≤ D, until a minimum of the parameter m/D is
found and the corresponding reduced cross-section
diameter d∗ (Equation (1)) is assumed as an esti-
mate of the defect entity.

Note that the whole procedure could be easily autom-
atized, as schematized in the flow chart of Supplemen-
tary Figure S3 to allow a real-time identification of de-
fect and interface forces. The procedure may be extended
also to the case of multiple defects, which would reflect in
a larger investigation domain and number of iterations.

III. RESULTS AND DISCUSSION

A. Determination of defect entity and tribological
properties

In Table I the different tested cases are presented, indi-
cating for each the defect size, the values of the reaction
forces at the bundle tip and of the minimization param-
eter m/D. We conclude that the defect has an equiv-
alent diameter d∗ ≈ 18 nm, which resulted in a good
superposition between the simulated and experimental
deformed geometry (Figure 2(a)) and it is compatible
with commonly recorded defects in such CNTs struc-
tures18–20. The comparison for all cases is reported in
the Supplementary Figures S4-S16, and Video S1 shows
the simulation with d = d∗.

https://doi.org/10.1088/1361-6463/ab1581
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FIG. 2. (a) Evolution of the normalized residual m/D at the equilibrium peeling configuration for different values of d. The
minimum corresponds to an estimated defect diameter d∗ ≈ 18 nm. Three limit configurations are depicted, superimposing
simulations to experiment. (b) Derived friction law and corresponding parameters from the best-fit of the H − V results from
FEM simulations (Table I). The yellow point corresponds to the simulated case with H = 0 and d = 45 nm (Figure 1(b)) and
it is not included in the fit.

TABLE I. Residual function m/D, friction and adhesion
forces as computed from the different simulated cases (d/D).
The sign of the forces refers to directions depicted in Fig-
ure 1(b).

d
d/D

H V
m/D

(nm) (pN) (pN)
10.0 0.222 0.96 -0.35 6.89
15.0 0.333 4.45 1.65 3.59
16.0 0.356 5.29 2.14 2.70
17.0 0.378 6.09 2.62 1.89
18.0 0.400 6.84 3.07 1.61
19.0 0.422 7.51 3.48 1.68
20.0 0.444 8.10 3.84 1.89
22.5 0.500 9.23 4.54 2.65
25.0 0.556 9.98 5.01 3.52
30.0 0.667 10.80 5.52 4.62
35.0 0.778 11.18 5.76 5.19
40.0 0.889 11.36 5.87 5.41
45.0 1.000 11.46 5.93 5.55

Furthermore, we exploited all the performed simula-
tions to determine the friction and adhesion at the con-
tact point. Assuming the interaction in the form of a gen-
eralized Coulomb’s friction law as H = µ V +Γ31 the fric-
tion coefficient µ and the adhesion force Γ can be deter-
mined by linear fit on the computed points (Hi, Vi). From
our simulations we computed µ ≈ 1.65 and Γ ≈ 1.84 pN.
The computed adhesion is γ = Γ/D ≈ 41 µN/m, which

is compatible with literature values among various sub-
strates15. Apart from the case of d = 10 nm, for compati-
bility conditions the bundle is always compressed and for
d∗ = 18 nm the resultant compressive axial force is lower
than 7.5 pN, while the maximum bending moment oc-
curs in the proximity of the defect section and it is equal
to 3 · 10−5 pNm (Supplementary Figure S17). Although
the bundle was free to move along y, negligible move-
ment was recorded in the out-of-plane direction from our
simulations. To evaluate possible artifacts in the acqui-
sition of the geometry and related estimation of contact
forces, we evaluated the effects of a lateral movement of
the probe. In addition to the previous configuration we
applied a lateral displacement ηO= [0, 2.89, 0] µm to the
bundle with d = d∗: this would reflect to a maximum
difference of 1 % in the projected length of the bundle
on the xz plane. In this limit configuration we calculated
H = 6.45 pN and V = 2.75 pN, which are slightly lower
than the previously computed values (Table I). Assuming
these values as lower bounds of the real reactions, the un-
certainty on the estimate would be H = 6.64 ± 0.19 pN
and V = 2.91 ± 0.16 pN. Thus, even a relatively poor
control of the probe would not significantly affect the
estimation of contact interactions, confirming results on
our previous peeling experiments25.

https://doi.org/10.1088/1361-6463/ab1581
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B. Buckling experiment and analysis

In a second configuration, the analyzed CNTs bundle
experienced buckling deformation when approaching to
the AFM back surface. This conclusion is supported by
the geometry acquisition (Figure 3(a)), which provided
a projected length of only 24.9 µm, somewhat lower with
respect to the actual length of the bundle of 28.05 µm
measured both at the rest (Figure 1(a)) and in the peeling
configuration (Figure 1(b)) previously presented. This
hypotesis implies an out-of-plane (y direction) displace-
ment of the fibre, which is confirmed by the fact that
the final part of the bundle is not at the same focusing
length under the SEM electron beam. Given that, it was
not possible to quantitatively apply the inverse approach
proposed above, since the exact coordinates (y compo-
nents) were not known, but some considerations on the
system could be made anyway.

To derive more information about the interactions gen-
erating the buckling deformation, a further set of simu-
lations was performed in order to determine the com-

ponents of the force ~P acting on the bundle tip. This
concentrated buckling force is considered as the resul-
tant of a distributed load which likely occurs on the
bundle due to the electron beam induced charge accu-
mulation on the AFM and on the bundle32,33. We first
computed the x and z components of the tip displace-
ment (point B) as difference between the known initial
and final post-buckling configuration being respectively
at xB = −4.09 µm and zB = −0.16 µm. These two de-
termined components were imposed to the tip while the
third one, yB, was varied to minimize the difference be-
tween the simulated and experimental projection of the
deformed bundle on the vertical plane. The simulation
obtained deformed shape, based upon the defective bun-
dle determined from our previous calculations, is qualita-
tively consistent with the one obtained from experiments
(Figure 3(a) and Supplementary Video S2). A localized
rotation at the defect location is clearly visible, provid-
ing a further proof of its actual presence. The magnitude

of the components of ~P that cause the buckling config-
uration were determined at equilibrium, being equal to
Px = 9.83 pN, Py ≈ 3.91 pN, Pz = 0.77 pN (Figure 3(b),
refer to Figure 3(a) for direction).

The component of ~P along the bundle longitudinal axis
can be derived by studying the stability of an equivalent
2 degrees-of-freedom (2DOFs) system (Figure 4), com-
prised of two rigid bars of length l1 = OC = 15.25 µm
and l2 = CB = 5.25 µm and subjected to the axial load
P . The bending stiffness of the segment OC is taken
into account by the rotational spring at point O with
k1 = 3EI/l1, where I = πD4/64 is the bundle cross-
section moment of inertia. The defect and the deforma-
tion of the segment CB are taken into account by the
rotational spring at point C with k2 = E/

(
ldef
I∗ + l2

3I

)
,

where I∗ = πd∗4/64. The displacements in the plane
of instability ηC and ηB of the defect section and of the

bundle tip, respectively, are assumed as generalized co-
ordinates. The total potential energy W of this system
(Figure 4) can be expressed as:

W (ηB, ηC) =
1

2
k1

(
arcsin

ηC
l1

)2

+
1

2
k2

(
arcsin

ηC
l1

− arcsin
ηB − ηC

l2

)2

− P

{
l1

[
1 − cos

(
arcsin

ηC
l1

)]
+ l2

[
1 − cos

(
arcsin

ηB − ηC
l2

)]
.

(2)

By expanding W according to the second order Taylor’s
series in the nearby of the origin we obtain:

W (ηB, ηC) ≈1

2
k1

(
ηC
l1

)2

+
1

2
k2

(
ηC
l1

− ηB − ηC
l2

)2

− 1

2
P

[
ηC

2

l1
+

(ηB − ηC)
2

l2

]
.

(3)

The equilibrium condition can be found by imposing the
stationariness of the potential, i.e. ∂W

∂ηi
= 0, which yields

to the following homogeneous linear system of algebraic
equations:

[W ′] (η) =

[
w11 w12

w21 w22

](
ηC
ηB

)
=

(
0
0

)
(4)

where

w11 = −P
(

1

l1
+

1

l2

)
+
k1
l21

+ k2

(
1

l21
+

2

l1l2
+

1

l22

)
(5a)

w12 = w21 =
P

l2
− k2

(
1

l1l2
+

1

l22

)
(5b)

w22 = −P
l2

+
k2
l22

(5c)

The system admits a non-trivial solution when det [W ′] =
0, from which it is possible to determine the first eigen-
value corresponding to the lower critical buckling load:

Pcrit =
1

2

{
k1
l1

+ k2

(
1

l1
+

1

l2

)

−

√[
k1
l1

+ k2

(
1

l1
+

1

l2

)]2
− 4k1k2

l1l2

} (6)
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FIG. 3. (a) SEM image (lateral view) of the buckled CNTs bundle compared with the simulation derived deformed shape
(in red, lateral xz and top xy views) obtained with the estimated defect size (see Supplementary Videos S2-S3 for simulation
animations). The yellow dashed line depicts the initial configuration of the bundle. (b) Evolution of the three component and

the resultant of ~P during the buckling simulation vs. the corresponding normalized displacement of point B.

FIG. 4. 2DOFs model for the buckling analysis of the bundle.

which returns Pcrit = 33.6 pN. This value represents an
upper bound since it was obtained neglecting the con-
temporary action of the y component of P and of further
geometrical imperfections of the bundle, and under the
assumption of rigid elements with concentrated elastic-
ity and in-plane buckling. By substituting Equation (6)
into either of the two of Equations (4) the corresponding
eigenvector is ηC ≈ 0.66 · ηB which is in good agreement
with the deformed shape at equilibrium obtained from
FEM simulation (Figure 3(a)).

The observed movement of the CNTs bundle extremity
is fully compatible and explained with the charge concen-
tration caused by the curvature radius at the AFM edge.
Since the width of the AFM probe is of 30 µm, the tip
of the CNTs bundle likely fell on its surface and a larger
vertical displacement of the tip is excluded. Figure 3(b)

reports the force-displacement curves obtained from sim-

ulations for ~P and its components along the coordinate
axes. The x component is related to an unstable equi-
librium reached after a critical buckling force component
Px = 10.2 pN, while the y component monotonically in-
creases and its value at the end of the simulation repre-
sents the minimum force required to reach the equilib-
rium configuration. The path of the resultant buckling

force ~P corresponds to a stable equilibrium configuration
that, thus, can be maintained only by the presence of fric-
tion and adhesion with the substrate, since when contact
occurs the difference of electrostatic potential would be
annulled and the initial configuration partially or com-
pletely restored. In the end, this confirms the order of
magnitude of adhesion and friction interaction forces pre-
viously determined.

IV. CONCLUSION

The computational procedure reported in this work by
the analysis of the elastica of a defective CNTs bundle in
various peeling configuration could be exploited for the
study of tribological interactions of 1D nanostructures
and their derivatives, ranging from biological molecular
chains34 and fibres to 2D CNTs buckypaper or 3D assem-
blies, such as hierarchical CNTs tubes35. These reliable
measurements of contact interactions would be impor-
tant for modeling complex architectures36, whose struc-
tural properties rely on contact forces. Nanodefect iden-
tification and monitoring could be a further application
of our results, also to be exploited for real-time control

https://doi.org/10.1088/1361-6463/ab1581
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via image correlation technique of the structural integrity
of 1D nanostructures for nanoelectronics, and could be
possibly implemented and enhanced by machine learning
techniques.
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