4 research outputs found

    Solar slow magneto-acoustic-gravity waves: an erratum correction and a revisited scenario

    Full text link
    Slow waves are commonly observed on the entire solar atmosphere. Assuming a thin flux tube approximation, the cut-off periods of slow-mode magneto-acoustic-gravity waves that travel from the photosphere to the corona were obtained in Costa et al. (2018). In that paper, however, a typo in the specific heat coefficient at constant pressure cpc_{\mathrm{p}} value led to an inconsistency in the cut-off calculation, which is only significant at the transition region. Due to the abrupt temperature change in the region, a change of the mean atomic weight (by a factor of approximately two) also occurs, but is often overlooked in analytical models for simplicity purposes. In this paper, we revisit the calculation of the cut-off periods of magneto-acoustic-gravity waves in Costa et al. (2018) by considering an atmosphere in hydrostatic equilibrium with a temperature profile, with the inclusion of the variation of the mean atomic weight and the correction of the inconsistency aforementioned. In addition, we show that the cut-off periods obtained analytically are consistent with the corresponding periods measured in observations of a particular active region.Comment: 12 pages, 7 figures. MNRA

    Refined physical parameters for Chariklo’s body and rings from stellar occultations observed between 2013 and 2020

    Get PDF
    Context. The Centaur (10199) Chariklo has the first ring system discovered around a small object. It was first observed using stellar occultation in 2013. Stellar occultations allow sizes and shapes to be determined with kilometre accuracy, and provide the characteristics of the occulting object and its vicinity. Aims. Using stellar occultations observed between 2017 and 2020, our aim is to constrain the physical parameters of Chariklo and its rings. We also determine the structure of the rings, and obtain precise astrometrical positions of Chariklo. Methods. We predicted and organised several observational campaigns of stellar occultations by Chariklo. Occultation light curves were measured from the datasets, from which ingress and egress times, and the ring widths and opacity values were obtained. These measurements, combined with results from previous works, allow us to obtain significant constraints on Chariklo's shape and ring structure. Results. We characterise Chariklo's ring system (C1R and C2R), and obtain radii and pole orientations that are consistent with, but more accurate than, results from previous occultations. We confirm the detection of W-shaped structures within C1R and an evident variation in radial width. The observed width ranges between 4.8 and 9.1 km with a mean value of 6.5 km. One dual observation (visible and red) does not reveal any differences in the C1R opacity profiles, indicating a ring particle size larger than a few microns. The C1R ring eccentricity is found to be smaller than 0.022 (3σ), and its width variations may indicate an eccentricity higher than ~0.005. We fit a tri-axial shape to Chariklo's detections over 11 occultations, and determine that Chariklo is consistent with an ellipsoid with semi-axes of 143.8-1.5+1.4, 135.2-2.8+1.4, and 99.1-2.7+5.4 km. Ultimately, we provided seven astrometric positions at a milliarcsecond accuracy level, based on Gaia EDR3, and use it to improve Chariklo's ephemeris

    Pseudostreamer influence on flux rope evolution

    Get PDF
    Context. A highly important aspect of solar activity is the coupling between eruptions and the surrounding coronal magnetic field topology, which determines the trajectory and morphology of the ejected plasma. Pseudostreamers (PSs) are coronal magnetic structures formed by arcs of twin loops capped by magnetic field lines from coronal holes of the same polarity that meet at a central spine. PSs contain a single magnetic null point in the spine, immediately above the closed field lines, which potentially influences the evolution of nearby flux ropes (FRs). Aims. Because of the impact of magnetic FR eruptions on space weather, we aim to improve current understanding of the deflection of coronal mass ejections (CMEs). To understand the net effect of PSs on FR eruptions, it is first necessary to study diverse and isolated FR–PS scenarios that are not influenced by other magnetic structures. Methods. We performed numerical simulations in which a FR structure is in the vicinity of a PS magnetic configuration. The combined magnetic field of the PS and the FR results in the formation of two magnetic null points. We evolve this scenario by numerically solving the magnetohydrodynamic equations in 2.5D. The simulations consider a fully ionised compressible ideal plasma in the presence of a gravitational field and a stratified atmosphere. Results. We find that the dynamic behaviour of the FR can be categorised into three different classes based on the FR trajectories and whether it is eruptive or confined. Our analysis indicates that the magnetic null points are decisive in the direction and intensity of the FR deflection and their hierarchy depends on the topological arrangement of the scenario. Moreover, the PS lobe acts as a magnetic cage enclosing the FR. We report that the total unsigned magnetic flux of the cage is a key parameter defining whether or not the FR is ejected

    Observational and numerical characterization of a recurrent arc-shaped front propagating along a coronal fan

    No full text
    Context. Recurrent, arc-shaped intensity disturbances were detected by extreme-ultraviolet channels in an active region. The fronts were observed to propagate along a coronal loop bundle rooted in a small area within a sunspot umbra. Previous works have linked these intensity disturbances to slow magnetoacoustic waves that propagate from the lower atmosphere to the corona along the magnetic field. Aims. The slow magnetoacoustic waves propagate at the local cusp speed, which is equivalent to the sound speed in a low-β-regime plasma. However, the measured propagation speeds from the intensity images are usually smaller as they are subject to projection effects due to the inclination of the magnetic field with respect to the line of sight. We aim to understand the effect of projection by comparing observed speeds with those from a numerical model. Methods. Using multi-wavelength data, we determined the periods present in the observations at different heights of the solar atmosphere through Fourier analysis. We calculated the plane-of-sky speeds along one of the loops from the cross-correlation time-lags obtained as a function of distance along the loop. We performed a 2D ideal magnetohydrodynamic simulation of an active region embedded in a stratified atmosphere. We drove slow waves from the photosphere with a three-minute periodicity. Synthetic time–distance maps were generated from the forward-modelled intensities in coronal wavelengths and the projected propagation speeds were calculated. Results. The intensity disturbances show a dominant period between 2 and 3 min at different heights of the atmosphere. The apparent propagation speeds calculated for coronal channels exhibit an accelerated pattern with values increasing from 40 to 120 km s−1 as the distance along the loop rises. The propagation speeds obtained from the synthetic time–distance maps also exhibit accelerated profiles within a similar range of speeds. Conclusions. We conclude that the accelerated propagation in our observations is due to the projection effect
    corecore