5,752 research outputs found

    Renormalization of tensor-network states

    Full text link
    We have discussed the tensor-network representation of classical statistical or interacting quantum lattice models, and given a comprehensive introduction to the numerical methods we recently proposed for studying the tensor-network states/models in two dimensions. A second renormalization scheme is introduced to take into account the environment contribution in the calculation of the partition function of classical tensor network models or the expectation values of quantum tensor network states. It improves significantly the accuracy of the coarse grained tensor renormalization group method. In the study of the quantum tensor-network states, we point out that the renormalization effect of the environment can be efficiently and accurately described by the bond vector. This, combined with the imaginary time evolution of the wavefunction, provides an accurate projection method to determine the tensor-network wavfunction. It reduces significantly the truncation error and enable a tensor-network state with a large bond dimension, which is difficult to be accessed by other methods, to be accurately determined.Comment: 18 pages 23 figures, minor changes, references adde

    Environmental assessment of a new building envelope material derived from urban agriculture wastes: the case of the tomato plants stems

    Get PDF
    Purpose: Decarbonizing cities is one of today biggest challenges. In this regard, particular attention has been paid on improving the environmental performance of buildings. In this framework, this work consists in assessing the environmental impact of an innovative building envelope component derived from urban agriculture (UA) wastes. In fact, rooftop UA seems to be a possible solution to the rising food demand due to increasing urban demographic growth. Consequently, rooftop UA wastes need to be treated in sustainable ways. Methods: This study aims to determine the carbon footprint and embodied energy of a new infill wall material, derived from UA wastes produced by a building rooftop greenhouse tomato crop, and evaluate the potential biogenic carbon that such by-product could fix temporally until its end of life. After an initial description of the manufacturing process of the new material, its carbon footprint and embodied energy have been calculated by means of the life cycle assessment (LCA) methodology according to the ISO 14044 and the ISO 14067 guidelines adapted to the analyzed context. In particular, the inventory analysis is based on data collected from the production of samples of the new material at the laboratory scale. Results and discussion: The results of the LCA indicate that, when the biogenic carbon fixed in the UA wastes is considered, a negative carbon footprint of -0.2 kg CO2 eq. per kg of material can be obtained. Hence, it can be assumed that from a life cycle perspective the material is able to fix carbon emissions instead of emitting them. Specifically, for the considered scenario, approximately 0.42 kg CO2 eq./m2 per year could be sequestered. However, the crop area required to produce enough waste to manufacture a unit of material is quite high. Therefore, future studies should focus on individuate solutions to reduce the density of the new component, and also different urban crops with higher waste production rates. Conclusions: The outcomes of the study put in evidence the potential of the new proposed infill wall component in fixing carbon emissions from UA, allowing to also compensate those relating to the production and transportation stages of the component life cycle. Moreover, producing by-products with UA wastes, hence temporally storing the carbon fixed by crops, may contribute to reduce the carbon cycles speed conversely to traditional waste management solutions, other than lower new raw materials depletion

    Coste de la limpieza “cotidiana” de playas

    Get PDF
    Más de 90.000 buques mercantes al año cruzan el Estrecho de Gibraltar de los que aproximadamente un 5% son petroleros. Ello, conjuntamente con la existencia de varios puertos con refinerías y polígonos industriales petroquímicos y la práctica del bunkering para aprovisionamiento de combustible, hace a la costa gaditana un punto de riesgo para la contaminación por hidrocarburos (Carmona et al., 2009). La Demarcación de Costas de Andalucía-Atlántico (DCAA), dependiente del Ministerio de Agricultura, Alimentación y Medio Ambiente, ha realizado en numerosas ocasiones la limpieza de su litoral debido a la polución producida por ese tipo de vertidos (Carmona et al., 2012), existiendo ya alguna bibliografía sobre cómo abordar la retirada de alquitrán y otros derivados similares de las playas (e.g. DGC 2005, CEPRECO 2006a, CEPRECO 2006b). Sin embargo, además de la fracción no volátil de los hidrocarburos, existe otro tipo de desechos, naturales y/o antrópicos, que llegan a nuestras playas y que, debido sobre todo al carácter turístico de nuestro litoral, deben ser recogidos. Por ley, esta limpieza corresponde a las autoridades locales. No obstante, debido a la escasez de su presupuesto, los municipios suelen atender prioritariamente a la limpieza de las playas más urbanas y de máxima utilización. Es por este motivo que, dentro de un espíritu de colaboración entre Administraciones, la DCAA, mediante su partida de conservación y mantenimiento, ha apoyado las tareas de los Ayuntamientos, reforzando la labor municipal en las playas más concurridas y limpiando aquellas que son menos visitadas ya sea por su lejanía del casco urbano o por su escasez de servicios. En esta ponencia se presentarán los medios humanos y materiales con los que se cuenta para esta tarea, aportando cifras de toneladas de basura retiradas y coste del trabajo, junto con una comparación superficial con los datos de otros organismos y alguna sugerencia de posibles mejoras de la productividad

    A Study of Archiving Strategies in Multi-Objective PSO for Molecular Docking

    Get PDF
    Molecular docking is a complex optimization problem aimed at predicting the position of a ligand molecule in the active site of a receptor with the lowest binding energy. This problem can be formulated as a bi-objective optimization problem by minimizing the binding energy and the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands. In this context, the SMPSO multi-objective swarm-intelligence algorithm has shown a remarkable performance. SMPSO is characterized by having an external archive used to store the non-dominated solutions and also as the basis of the leader selection strategy. In this paper, we analyze several SMPSO variants based on different archiving strategies in the scope of a benchmark of molecular docking instances. Our study reveals that the SMPSOhv, which uses an hypervolume contribution based archive, shows the overall best performance.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Turbidity and Other Effects Resulting from Trafalgar Sandbank Dredging and Palmar Beach Nourishment

    Get PDF
    Beach-nourishment requirements on the southwestern Spanish coast have led to a significant increase in offshore dredging. Following a new research line, assessment of changes recorded in physicochemical and biological parameters due to dredging and dumping operations was performed at the Cape of Trafalgar and Palmar Beach during June and July 2008. Turbidity, salinity, pH, dissolved oxygen, temperature, and suspended-sediment data were collected at 10 stations. At the end of the study, a three-campaign monitoring program was implemented for 1 year to assess the possible effects on biological communities and sediment properties. The relevant results, such as the average extent of the sediment plume (< 400 m) and its persistence in the environment (< 10 min), are discussed in this paper. A precise correlation between turbidity and suspended sediments and the recovery time of ecological balance were also established. Furthermore, minimal and reversible effects caused by dredging and dumping operations in this type of marine environment were identified

    Neutrino masses beyond the tree level

    Full text link
    Models for Majorana neutrino masses can be classified according to the level in perturbation theory at which the effective dimension five operator LLHHLLHH is realized. The possibilities range from the tree-level up to the three-loop level realizations. We discuss some general aspects of this approach and speculate about a model independent classification of the possible cases. Among all the realizations, those in which the effective operator is induced by radiative corrections open the possibility for lepton number violation near -or at- the electroweak scale. We discuss some phenomenological aspects of two generic radiative realizations: the Babu-Zee model and supersymmetric models with bilinear R-parity violation.Comment: 7 pages, 3 figures. Contribution to the workshop "30 years of strong interactions", Spa, Belgium, 6-8 April 201

    Complete-Graph Tensor Network States: A New Fermionic Wave Function Ansatz for Molecules

    Get PDF
    We present a new class of tensor network states that are specifically designed to capture the electron correlation of a molecule of arbitrary structure. In this ansatz, the electronic wave function is represented by a Complete-Graph Tensor Network (CGTN) ansatz which implements an efficient reduction of the number of variational parameters by breaking down the complexity of the high-dimensional coefficient tensor of a full-configuration-interaction (FCI) wave function. We demonstrate that CGTN states approximate ground states of molecules accurately by comparison of the CGTN and FCI expansion coefficients. The CGTN parametrization is not biased towards any reference configuration in contrast to many standard quantum chemical methods. This feature allows one to obtain accurate relative energies between CGTN states which is central to molecular physics and chemistry. We discuss the implications for quantum chemistry and focus on the spin-state problem. Our CGTN approach is applied to the energy splitting of states of different spin for methylene and the strongly correlated ozone molecule at a transition state structure. The parameters of the tensor network ansatz are variationally optimized by means of a parallel-tempering Monte Carlo algorithm

    Lepton flavor violation and seesaw symmetries

    Get PDF
    peer reviewedWhen the standard model is extended with right-handed neutrinos the symmetries of the resulting Lagrangian are enlarged with a new global U(1)R Abelian factor. In the context of minimal seesaw models we analyze the implications of a slightly broken U(1)R symmetry on charged lepton flavor violating decays. We find, depending on the R-charge assignments, models where charged lepton flavor violating rates can be within measurable ranges. In particular, we show that in the resulting models due to the structure of the light neutrino mass matrix muon flavor violating decays are entirely determined by neutrino data (up to a normalization factor) and can be sizable in a wide right-handed neutrino mass range

    First report of Alternaria black spot of pomegranate caused by Alternaria alternata in Spain

    Full text link
    Berbegal, M.; López- Cortés, I.; Salazar Hernández, DM.; Gramaje, D.; Perez-Sierra, A.; Garcia-Jimenez, J.; Armengol, J. (2014). First report of Alternaria black spot of pomegranate caused by Alternaria alternata in Spain. Plant Disease. 98(5):689-689. doi:10.1094/PDIS-07-13-0717-PDNS68968998
    corecore