46 research outputs found

    The role of regulatory T cells in antigen-induced arthritis: aggravation of arthritis after depletion and amelioration after transfer of CD4(+)CD25(+ )T cells

    Get PDF
    It is now generally accepted that CD4(+)CD25(+ )T(reg )cells play a major role in the prevention of autoimmunity and pathological immune responses. Their involvement in the pathogenesis of chronic arthritis is controversial, however, and so we examined their role in experimental antigen-induced arthritis in mice. Depletion of CD25-expressing cells in immunized animals before arthritis induction led to increased cellular and humoral immune responses to the inducing antigen (methylated bovine serum albumin; mBSA) and autoantigens, and to an exacerbation of arthritis, as indicated by clinical (knee joint swelling) and histological scores. Transfer of CD4(+)CD25(+ )cells into immunized mice at the time of induction of antigen-induced arthritis decreased the severity of disease but was not able to cure established arthritis. No significant changes in mBSA-specific immune responses were detected. In vivo migration studies showed a preferential accumulation of CD4(+)CD25(+ )cells in the inflamed joint as compared with CD4(+)CD25(- )cells. These data imply a significant role for CD4(+)CD25(+ )T(reg )cells in the control of chronic arthritis. However, transferred T(reg )cells appear to be unable to counteract established acute or chronic inflammation. This is of considerable importance for the timing of T(reg )cell transfer in potential therapeutic applications

    Cell-Enriched Lipotransfer (CELT) Improves Tissue Regeneration and Rejuvenation without Substantial Manipulation of the Adipose Tissue Graft

    Get PDF
    The good availability and the large content of adult stem cells in adipose tissue has made it one of the most interesting tissues in regenerative medicine. Although lipofilling is one of the most frequent procedures in plastic surgery, the method still struggles with high absorption rates and volume losses of up to 70%. Therefore, many efforts have been made to optimize liposuction and to process the harvested tissue in order to increase fat graft retention. Because of their immunomodulatory properties, their cytokine secretory activity, and their differentiation potential, enrichment with adipose tissue-derived stem cells was identified as a promising tool to promote transplant survival. Here, we review the important parameters for lipofilling optimization. Finally, we present a new method for the enrichment of lipoaspirate with adipose tissue-derived stem cells and discuss the parameters that contribute to fat graft survival

    Comparative Study of the Sensitivity of Different Diagnostic Methods for the Laboratory Diagnosis of Buruli Ulcer Disease

    Get PDF
    Background. Several diagnostic laboratory methods are available for case confirmation of Buruli ulcer disease. This study assessed the sensitivity of various diagnostic tests in relation to clinical presentation of the disease, type of diagnostic specimen, and treatment history. Methods. Swab samples, 3-mm punch biopsy tissue specimens, and surgically excised tissue specimens from 384 individuals with suspected Buruli ulcer disease were obtained at 9 different study sites in Ghana and were evaluated with dry reagent-based polymerase chain reaction (PCR), microscopic examination, culture, and histopathological analysis. The study subjects presented with nonulcerative and ulcerative lesions and were divided into 3 treatment groups: (1) previously untreated patients scheduled for antimycobacterial treatment, (2) patients treated with surgery alone, and (3) patients treated with surgery in combination with previous antimycobacterial treatment. Results. Of 384 suspected cases of Buruli ulcer disease, 268 were confirmed by at least 1 positive test result. The overall sensitivity of PCR (85%) was significantly higher than that of microscopic examination (57%) and culture (51%). After data were stratified by treatment group, type of lesion, and diagnostic specimen type, analysis revealed that PCR of 3-mm punch biopsy tissue specimens (obtained from previously untreated nonulcerative lesions) and of swab samples (obtained from previously untreated ulcers) had the highest diagnostic sensitivity (94% and 90%, respectively). Although duration of the disease did not significantly influence the sensitivity of any test, previous antimycobacterial treatment was significantly associated with decreased sensitivity of PCR and culture. Conclusions. Across all subgroups, PCR had the highest sensitivity. PCR assessment of 3-mm punch biopsy tissue specimens proved to be the best diagnostic tool for nonulcerative lesions, and PCR assessment of swab samples was the best diagnostic tool for ulcerative lesions. For monitoring of antimycobacterial treatment success within controlled trials, however, only culture is appropriat

    Developmental Stage, Phenotype, and Migration Distinguish Naive- and Effector/Memory-like CD4+ Regulatory T Cells

    Get PDF
    Regulatory T cells (Tregs) fulfill a central role in immune regulation. We reported previously that the integrin αEβ7 discriminates distinct subsets of murine CD4+ regulatory T cells. Use of this marker has now helped to unravel a fundamental dichotomy among regulatory T cells. αE−CD25+ cells expressed L-selectin and CCR7, enabling recirculation through lymphoid tissues. In contrast, αE-positive subsets (CD25+ and CD25−) displayed an effector/memory phenotype expressing high levels of E/P-selectin–binding ligands, multiple adhesion molecules as well as receptors for inflammatory chemokines, allowing efficient migration into inflamed sites. Accordingly, αE-expressing cells were found to be the most potent suppressors of inflammatory processes in disease models such as antigen-induced arthritis

    Laboratory Confirmation of Buruli Ulcer Disease in Togo, 2007–2010

    Get PDF
    Buruli ulcer disease (BUD) is an emerging disease particularly affecting children under the age of 15 years. Due to scarring and contractures BUD may lead to severe functional disability. Introduction of antimycobacterial treatment necessitated the laboratory confirmation of BUD, and WHO recommends confirmation of at least 50% of patients with suspected BUD by polymerase chain reaction (PCR). In Togo, cases have been reported since the early 1990s. However, less than five percent were laboratory confirmed. Since 2007, the German Leprosy and Tuberculosis Relief Organization (DAHW) has supported the Togolese National Buruli Ulcer Control Program in the area of training, treatment and laboratory confirmation of BUD. In close collaboration of DAHW and the Department for Infectious Diseases and Tropical Medicine, University Hospital, Munich (DITM), diagnostic samples from Togolese patients with suspected BUD were subjected to PCR. Out of 202 suspected BUD cases 109 BUD patients (54%) were PCR confirmed over a period of three years. Whereas the PCR case confirmation rate initially was below 50%, intensified training measures for health staff in the field of clinical diagnosis and collection of diagnostic samples ultimately resulted in 69% PCR confirmed cases. Our findings confirm the prevalence of BUD in Maritime Region

    Disruption of Coronin 1 Signaling in T Cells Promotes Allograft Tolerance while Maintaining Anti-Pathogen Immunity

    Get PDF
    The ability of the immune system to discriminate self from non-self is essential for eradicating microbial pathogens but is also responsible for allograft rejection. Whether it is possible to selectively suppress alloresponses while maintaining anti-pathogen immunity remains unknown. We found that mice deficient in coronin 1, a regulator of naive T cell homeostasis, fully retained allografts while maintaining T cell-specific responses against microbial pathogens. Mechanistically, coronin 1-deficiency increased cyclic adenosine monophosphate (cAMP) concentrations to suppress allo-specific T cell responses. Costimulation induced on microbe-infected antigen presenting cells was able to overcome cAMP-mediated immunosuppression to maintain anti-pathogen immunity. In vivo pharmacological modulation of this pathway or a prior transfer of coronin 1-deficient T cells actively suppressed allograft rejection. These results define a coronin 1-dependent regulatory axis in T cells important for allograft rejection and suggest that modulation of this pathway may be a promising approach to achieve long-term acceptance of mismatched allografts

    Epigenetic Control of the foxp3 Locus in Regulatory T Cells

    Get PDF
    Compelling evidence suggests that the transcription factor Foxp3 acts as a master switch governing the development and function of CD4(+) regulatory T cells (Tregs). However, whether transcriptional control of Foxp3 expression itself contributes to the development of a stable Treg lineage has thus far not been investigated. We here identified an evolutionarily conserved region within the foxp3 locus upstream of exon-1 possessing transcriptional activity. Bisulphite sequencing and chromatin immunoprecipitation revealed complete demethylation of CpG motifs as well as histone modifications within the conserved region in ex vivo isolated Foxp3(+)CD25(+)CD4(+) Tregs, but not in naïve CD25(−)CD4(+) T cells. Partial DNA demethylation is already found within developing Foxp3(+) thymocytes; however, Tregs induced by TGF-β in vitro display only incomplete demethylation despite high Foxp3 expression. In contrast to natural Tregs, these TGF-β–induced Foxp3(+) Tregs lose both Foxp3 expression and suppressive activity upon restimulation in the absence of TGF-β. Our data suggest that expression of Foxp3 must be stabilized by epigenetic modification to allow the development of a permanent suppressor cell lineage, a finding of significant importance for therapeutic applications involving induction or transfer of Tregs and for the understanding of long-term cell lineage decisions

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment

    Emerging Next-Generation Target for Cancer Immunotherapy Research: The Orphan Nuclear Receptor NR2F6

    No full text
    Additional therapeutic targets suitable for boosting anti-tumor effector responses have been found inside effector CD4+ and CD8+ T cells. It is likely that future treatment options will combine surface receptor and intracellular protein targets. Utilizing germline gene ablation as well as CRISPR/Cas9-mediated acute gene mutagenesis, the nuclear receptor NR2F6 (nuclear receptor subfamily 2 group F member 6, also called Ear-2) has been firmly characterized as such an intracellular immune checkpoint in effector T cells. Targeting this receptor appears to be a strategy for improving anti-tumor immunotherapy responses, especially in combination with CTLA-4 and PD-1. Current preclinical experimental knowledge firmly validates the immune checkpoint function of NR2F6 in murine tumor models, which provides a promising perspective for immunotherapy regimens in humans in the near future. While the clinical focus remains on the B7/CD28 family members, protein candidate targets such as NR2F6 are now being investigated in laboratories around the world and in R&D companies. Such an alternative therapeutic approach, if demonstrated to be successful, could supplement the existing therapeutic models and significantly increase response rates of cancer patients and/or expand the reach of immune therapy regimens to include a wider range of cancer entities. In this perspective review, the role of NR2F6 as an emerging and druggable target in immuno-oncology research will be discussed, with special emphasis on the unique potential of NR2F6 and its critical and non-redundant role in both immune and tumor cells

    Coronin 1-Mediated Naive T Cell Survival Is Essential for the Development of Autoimmune Encephalomyelitis

    Get PDF
    Autoimmune encephalomyelitis is a disease of the CNS that can develop when an initial peripheral inflammatory stimulus is followed by infiltration and reactivation of T lymphocytes in the CNS. We report a crucial role for coronin 1, which is essential for maintenance of the naive T cell pool, for the development of murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. In the absence of coronin 1, immunization with myelin oligoglycoprotein (MOG(35-55)) peptide largely failed to induce EAE symptoms, despite normal mobilization of leukocyte subsets in the blood, as well as effector cytokine expression comparable with wild-type T cells on polyclonal stimulation. Susceptibility of coronin 1-deficient mice to EAE induction was restored by transfer of wild-type CD4(+) T cells, suggesting that the observed resistance of coronin 1-deficient mice to EAE development is T cell intrinsic. Importantly, although coronin 1-deficient regulatory T cells (Tregs) showed a suppressor activity comparable with wild-type Tregs, Treg depletion failed to restore EAE development in coronin 1-deficient animals. These results suggest a hitherto unrecognized role of naive T cells in the development of autoimmune encephalomyelitis and reveal coronin 1 as a crucial modulator of EAE induction
    corecore