24 research outputs found

    The Concise Guide to PHARMACOLOGY 2023/24: Ion channels

    Get PDF
    The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point‐in‐time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein‐coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid‐2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC‐IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    Comparison of in silico strategies to prioritize rare genomic variants impacting RNA splicing for the diagnosis of genomic disorders

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-03-09, accepted 2021-09-13, registration 2021-10-01, online 2021-10-18, pub-electronic 2021-10-18, collection 2021-12Publication status: PublishedFunder: Wellcome Trust; Grant(s): RP-2016-07-011, 200990/Z/16/ZFunder: Health Education EnglandAbstract: The development of computational methods to assess pathogenicity of pre-messenger RNA splicing variants is critical for diagnosis of human disease. We assessed the capability of eight algorithms, and a consensus approach, to prioritize 249 variants of uncertain significance (VUSs) that underwent splicing functional analyses. The capability of algorithms to differentiate VUSs away from the immediate splice site as being ‘pathogenic’ or ‘benign’ is likely to have substantial impact on diagnostic testing. We show that SpliceAI is the best single strategy in this regard, but that combined usage of tools using a weighted approach can increase accuracy further. We incorporated prioritization strategies alongside diagnostic testing for rare disorders. We show that 15% of 2783 referred individuals carry rare variants expected to impact splicing that were not initially identified as ‘pathogenic’ or ‘likely pathogenic’; one in five of these cases could lead to new or refined diagnoses

    GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements

    Get PDF
    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5–2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility

    Affinity of various benzodiazepine site ligands in mice with a point mutation in the GABA A receptor γ2 subunit

    No full text
    Abstract The benzodiazepine binding site of GABA A receptors is located at the interface of the a and g subunits. Certain point mutations in these subunits have been demonstrated to dramatically reduce the affinity of benzodiazepine binding site ligands for these receptors. Recently, mice were generated with a phenylalanine (F) to isoleucine (I) substitution at position 77 in the g2 subunit of GABA A receptors. Here we tested the potency of 24 benzodiazepine binding site ligands from 16 different structural classes for inhibition of [ 3 H]flunitrazepam binding to brain membranes of these g2F77I mice. Results indicate that the potency of the classical 1,4-benzodiazepines, of the 1,4-thienodiazepine clotiazepam, the 1,5-benzodiazepine clobazam, or the pyrazoloquinoline CGS 9896 is only 2-7-fold reduced by this g2F77I point mutation. The potency of the imidazopyrimidines Ru 32698, Ru 33203, and Ru 33356, of the imidazoquinoline Ru 31719, or the pyrazolopyridine CGS 20625 is reduced 10-20-fold, whereas the potency of some imidazobenzodiazepines, b-carbolines, cyclopyrrolones, imidazopyridines, triazolopyridazines, or quinolines is 100-1000-fold reduced. Interestingly, the extent of potency reduction induced by the g2F77I point mutation varied within the structural classes of compounds. Results support and significantly extend previous observations indicating that the residue g2F77 is important for high affinity binding of some, but not all benzodiazepine site ligands

    GABAA alpha6-containing receptors are selectively compromised in cerebellar granule cells of the ataxic mouse, stargazer

    No full text
    Stargazer mice fail to express the γ2 isoform of transmembrane α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) receptor regulatory proteins that has been shown to be absolutely required for the trafficking and synaptic targeting of excitatory AMPA receptors in adult murine cerebellar granule cells. Here we show that 30 ± 6% fewer inhibitory γ-aminobutyric acid, type A (GABA(A)), receptors were expressed in adult stargazer cerebellum compared with controls because of a specific loss of GABA(A) receptor expression in the cerebellar granule cell layer. Radioligand binding assays allied to in situ immunogold-EM analysis and furosemide-sensitive tonic current estimates revealed that expression of the extrasynaptic (α6βxδ) α6-containing GABA(A) receptor were markedly and selectively reduced in stargazer. These observations were compatible with a marked reduction in expression of GABA(A) receptor α6, δ (mature cerebellar granule cell-specific proteins), and β3 subunit expression in stargazer. The subunit composition of the residual α6-containing GABA(A) receptors was unaffected by the stargazer mutation. However, we did find evidence of an ~4-fold up-regulation of α1βδ receptors that may compensate for the loss of α6-containing GABA(A) receptors. PCR analysis identified a dramatic reduction in the steady-state level of α6 mRNA, compatible with α6 being the primary target of the stargazer mutation-mediated GABA(A) receptor abnormalities. We propose that some aspects of assembly, trafficking, targeting, and/or expression of extrasynaptic α6-containing GABA(A) receptors in cerebellar granule cells are selectively regulated by AMPA receptor-mediated signaling

    From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors

    No full text
    In mammals, identifying the contribution of specific neurons or networks to behavior is a key challenge. Here we describe an approach that facilitates this process by enabling the rapid modulation of synaptic inhibition in defined cell populations. Binding of zolpidem, a systemically active allosteric modulator that enhances the function of the GABAA receptor, requires a phenylalanine residue (Phe77) in the gamma 2 subunit. Mice in which this residue is changed to isoleucine are insensitive to zolpidem. By Cre recombinase-induced swapping of the gamma 2 subunit (that is, exchanging Ile77 for Phe77), zolpidem sensitivity can be restored to GABAA receptors in chosen cell types. We demonstrate the power of this method in the cerebellum, where zolpidem rapidly induces significant motor deficits when Purkinje cells are made uniquely sensitive to its action. This combined molecular and pharmacological technique has demonstrable advantages over targeted cell ablation and will be invaluable for investigating many neuronal circuits
    corecore