1,049 research outputs found
Tethered subsatellite study
The results are presented of studies performed relating to the feasibility of deploying a subsatellite from the shuttle by means of a tether. The dynamics, the control laws, the aerodynamics, the heating, and some communication considerations of the tethered subsatellite system are considered. Nothing was found that prohibits the use of a subsatellite joined to the shuttle by a long (100 km) tether. More detailed studies directed at specific applications are recommended
Axisymmetric core collapse simulations using characteristic numerical relativity
We present results from axisymmetric stellar core collapse simulations in
general relativity. Our hydrodynamics code has proved robust and accurate
enough to allow for a detailed analysis of the global dynamics of the collapse.
Contrary to traditional approaches based on the 3+1 formulation of the
gravitational field equations, our framework uses a foliation based on a family
of outgoing light cones, emanating from a regular center, and terminating at
future null infinity. Such a coordinate system is well adapted to the study of
interesting dynamical spacetimes in relativistic astrophysics such as stellar
core collapse and neutron star formation. Perhaps most importantly this
procedure allows for the unambiguous extraction of gravitational waves at
future null infinity without any approximation, along with the commonly used
quadrupole formalism for the gravitational wave extraction. Our results
concerning the gravitational wave signals show noticeable disagreement when
those are extracted by computing the Bondi news at future null infinity on the
one hand and by using the quadrupole formula on the other hand. We have strong
indication that for our setup the quadrupole formula on the null cone does not
lead to physical gravitational wave signals. The Bondi gravitational wave
signals extracted at infinity show typical oscillation frequencies of about 0.5
kHz.Comment: 17 pages, 18 figures, submitted to Phys. Rev.
Advantages of modified ADM formulation: constraint propagation analysis of Baumgarte-Shapiro-Shibata-Nakamura system
Several numerical relativity groups are using a modified ADM formulation for
their simulations, which was developed by Nakamura et al (and widely cited as
Baumgarte-Shapiro-Shibata-Nakamura system). This so-called BSSN formulation is
shown to be more stable than the standard ADM formulation in many cases, and
there have been many attempts to explain why this re-formulation has such an
advantage. We try to explain the background mechanism of the BSSN equations by
using eigenvalue analysis of constraint propagation equations. This analysis
has been applied and has succeeded in explaining other systems in our series of
works. We derive the full set of the constraint propagation equations, and
study it in the flat background space-time. We carefully examine how the
replacements and adjustments in the equations change the propagation structure
of the constraints, i.e. whether violation of constraints (if it exists) will
decay or propagate away. We conclude that the better stability of the BSSN
system is obtained by their adjustments in the equations, and that the
combination of the adjustments is in a good balance, i.e. a lack of their
adjustments might fail to obtain the present stability. We further propose
other adjustments to the equations, which may offer more stable features than
the current BSSN equations.Comment: 10 pages, RevTeX4, added related discussion to gr-qc/0209106, the
version to appear in Phys. Rev.
Bondian frames to couple matter with radiation
A study is presented for the non linear evolution of a self gravitating
distribution of matter coupled to a massless scalar field. The characteristic
formulation for numerical relativity is used to follow the evolution by a
sequence of light cones open to the future. Bondian frames are used to endow
physical meaning to the matter variables and to the massless scalar field.
Asymptotic approaches to the origin and to infinity are achieved; at the
boundary surface interior and exterior solutions are matched guaranteeing the
Darmois--Lichnerowicz conditions. To show how the scheme works some numerical
models are discussed. We exemplify evolving scalar waves on the following fixed
backgrounds: A) an atmosphere between the boundary surface of an incompressible
mixtured fluid and infinity; B) a polytropic distribution matched to a
Schwarzschild exterior; C) a Schwarzschild- Schwarzschild spacetime. The
conservation of energy, the Newman--Penrose constant preservation and other
expected features are observed.Comment: 20 pages, 6 figures; to appear in General Relativity and Gravitatio
Scalar field induced oscillations of neutron stars and gravitational collapse
We study the interaction of massless scalar fields with self-gravitating
neutron stars by means of fully dynamic numerical simulations of the
Einstein-Klein-Gordon perfect fluid system. Our investigation is restricted to
spherical symmetry and the neutron stars are approximated by relativistic
polytropes. Studying the nonlinear dynamics of isolated neutron stars is very
effectively performed within the characteristic formulation of general
relativity, in which the spacetime is foliated by a family of outgoing light
cones. We are able to compactify the entire spacetime on a computational grid
and simultaneously impose natural radiative boundary conditions and extract
accurate radiative signals. We study the transfer of energy from the scalar
field to the fluid star. We find, in particular, that depending on the
compactness of the neutron star model, the scalar wave forces the neutron star
either to oscillate in its radial modes of pulsation or to undergo
gravitational collapse to a black hole on a dynamical timescale. The radiative
signal, read off at future null infinity, shows quasi-normal oscillations
before the setting of a late time power-law tail.Comment: 12 pages, 13 figures, submitted to Phys. Rev.
Tips for implementing multigrid methods on domains containing holes
As part of our development of a computer code to perform 3D `constrained
evolution' of Einstein's equations in 3+1 form, we discuss issues regarding the
efficient solution of elliptic equations on domains containing holes (i.e.,
excised regions), via the multigrid method. We consider as a test case the
Poisson equation with a nonlinear term added, as a means of illustrating the
principles involved, and move to a "real world" 3-dimensional problem which is
the solution of the conformally flat Hamiltonian constraint with Dirichlet and
Robin boundary conditions. Using our vertex-centered multigrid code, we
demonstrate globally second-order-accurate solutions of elliptic equations over
domains containing holes, in two and three spatial dimensions. Keys to the
success of this method are the choice of the restriction operator near the
holes and definition of the location of the inner boundary. In some cases (e.g.
two holes in two dimensions), more and more smoothing may be required as the
mesh spacing decreases to zero; however for the resolutions currently of
interest to many numerical relativists, it is feasible to maintain second order
convergence by concentrating smoothing (spatially) where it is needed most.
This paper, and our publicly available source code, are intended to serve as
semi-pedagogical guides for those who may wish to implement similar schemes.Comment: 18 pages, 11 figures, LaTeX. Added clarifications and references re.
scope of paper, mathematical foundations, relevance of work. Accepted for
publication in Classical & Quantum Gravit
Numerical Relativity: A review
Computer simulations are enabling researchers to investigate systems which
are extremely difficult to handle analytically. In the particular case of
General Relativity, numerical models have proved extremely valuable for
investigations of strong field scenarios and been crucial to reveal unexpected
phenomena. Considerable efforts are being spent to simulate astrophysically
relevant simulations, understand different aspects of the theory and even
provide insights in the search for a quantum theory of gravity. In the present
article I review the present status of the field of Numerical Relativity,
describe the techniques most commonly used and discuss open problems and (some)
future prospects.Comment: 2 References added; 1 corrected. 67 pages. To appear in Classical and
Quantum Gravity. (uses iopart.cls
Determination of the b quark mass at the M_Z scale with the DELPHI detector at LEP
An experimental study of the normalized three-jet rate of b quark events with
respect to light quarks events (light= \ell \equiv u,d,s) has been performed
using the CAMBRIDGE and DURHAM jet algorithms. The data used were collected by
the DELPHI experiment at LEP on the Z peak from 1994 to 2000. The results are
found to agree with theoretical predictions treating mass corrections at
next-to-leading order. Measurements of the b quark mass have also been
performed for both the b pole mass: M_b and the b running mass: m_b(M_Z). Data
are found to be better described when using the running mass. The measurement
yields: m_b(M_Z) = 2.85 +/- 0.18 (stat) +/- 0.13 (exp) +/- 0.19 (had) +/- 0.12
(theo) GeV/c^2 for the CAMBRIDGE algorithm. This result is the most precise
measurement of the b mass derived from a high energy process. When compared to
other b mass determinations by experiments at lower energy scales, this value
agrees with the prediction of Quantum Chromodynamics for the energy evolution
of the running mass. The mass measurement is equivalent to a test of the
flavour independence of the strong coupling constant with an accuracy of 7
permil.Comment: 24 pages, 10 figures, Accepted by Eur. Phys. J.
Measurement and Interpretation of Fermion-Pair Production at LEP energies above the Z Resonance
This paper presents DELPHI measurements and interpretations of
cross-sections, forward-backward asymmetries, and angular distributions, for
the e+e- -> ffbar process for centre-of-mass energies above the Z resonance,
from sqrt(s) ~ 130 - 207 GeV at the LEP collider. The measurements are
consistent with the predictions of the Standard Model and are used to study a
variety of models including the S-Matrix ansatz for e+e- -> ffbar scattering
and several models which include physics beyond the Standard Model: the
exchange of Z' bosons, contact interactions between fermions, the exchange of
gravitons in large extra dimensions and the exchange of sneutrino in R-parity
violating supersymmetry.Comment: 79 pages, 16 figures, Accepted by Eur. Phys. J.
A Determination of the Centre-of-Mass Energy at LEP2 using Radiative 2-fermion Events
Using e+e- -> mu+mu-(gamma) and e+e- -> qqbar(gamma) events radiative to the
Z pole, DELPHI has determined the centre-of-mass energy, sqrt{s}, using energy
and momentum constraint methods. The results are expressed as deviations from
the nominal LEP centre-of-mass energy, measured using other techniques. The
results are found to be compatible with the LEP Energy Working Group estimates
for a combination of the 1997 to 2000 data sets.Comment: 20 pages, 6 figures, Accepted by Eur. Phys. J.
- …