154 research outputs found

    Vortex arrays in neutral trapped Fermi gases through the BCS–BEC crossover

    Get PDF
    Vortex arrays in type-II superconductors reflect the translational symmetry of an infinite system. There are cases, however, such as ultracold trapped Fermi gases and the crust of neutron stars, where finite-size effects make it complex to account for the geometrical arrangement of vortices. Here, we self-consistently generate these arrays of vortices at zero and finite temperature through a microscopic description of the non-homogeneous superfluid based on a differential equation for the local order parameter, obtained by coarse graining the Bogoliubov–de Gennes (BdG) equations. In this way, the strength of the inter-particle interaction is varied along the BCS–BEC crossover, from largely overlapping Cooper pairs in the Bardeen–Cooper–Schrieffer (BCS) limit to dilute composite bosons in the Bose–Einstein condensed (BEC) limit. Detailed comparison with two landmark experiments on ultracold Fermi gases, aimed at revealing the presence of the superfluid phase, brings out several features that make them relevant for other systems in nature as well

    Tunka Advanced Instrument for cosmic rays and Gamma Astronomy

    Full text link
    The paper is a script of a lecture given at the ISAPP-Baikal summer school in 2018. The lecture gives an overview of the Tunka Advanced Instrument for cosmic rays and Gamma Astronomy (TAIGA) facility including historical introduction, description of existing and future setups, and outreach and open data activities.Comment: Lectures given at the ISAPP-Baikal Summer School 2018: Exploring the Universe through multiple messengers, 12-21 July 2018, Bol'shie Koty, Russi

    Water vapour in the atmosphere of a transiting extrasolar planet

    Get PDF
    Water is predicted to be among, if not the most abundant molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (hot-Jupiters) Several attempts have been made to detect water on an exoplanet, but have failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot-Jupiter HD189733b taken during the transit, where the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6, 5.8 and 8 microns. The larger effective radius observed at visible wavelengths may be due to either star variability or the presence of clouds/hazes. We explain the most recent thermal infrared observations of the planet during secondary transit behind the star, reporting a non-detection of water on HD189733b, as being a consequence of the nearly isothermal vertical profile of the planet.s atmosphere. Our results show that water is detectable on extrasolar planets using the primary transit technique and that the infrared should be a better wavelength region than the visible, for such searches

    Prevalence of metabolic syndrome in Murcia Region, a southern European Mediterranean area with low cardiovascular risk and high obesity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic syndrome (MS) is associated with subsequent appearance of diabetes and cardiovascular disease. As compared to other Spanish regions, Murcia (southern Spain) registers increased obesity as well as cardiovascular morbidity and mortality. The aim of this study was to assess the prevalence of MS and its components, awareness of obesity as a health risk and associated lifestyles.</p> <p>Methods</p> <p>A population-based, cross-sectional study was conducted in 2003, covering a sample of 1555 individuals 20 years and over. MS was defined according to the Revised National Cholesterol Education Program Adult Treatment Panel III (R-ATPIII), International Diabetes Federation (IDF) and Joint Interim Statement (JIS) criteria. Both low (94/80) and high (102/88) waist circumference (WC) thresholds were considered.</p> <p>Results</p> <p>Prevalence of MS was 27.2% (95%CI: 25.2-29.2), 32.2% (95%CI: 30.1-34.3) and 33.2% (95%CI: 31.2-35.3) according to the R-ATPIII, IDF and JIS94/80 respectively. It increased with age until reaching 52.6% (R-ATPIII) or 60.3% (JIS94/80) among persons aged 70 years and over, and was higher in persons with little or no formal education (51.7% R-ATPIII, 57.3% JIS94/80). The most common risk factors were hypertension (46.6%) and central obesity (40.7% and 66.1% according to high and low WC cut-off points respectively). Although most persons were aware that obesity increased health risks, regular exercise was very unusual (13.0% centrally obese, 27.2% non-centrally obese). Adherence to dietary recommendations was similar among centrally obese and non-centrally obese subjects.</p> <p>Conclusions</p> <p>Prevalence of MS is high in our population, is comparable to that found in northern Europe and varies with the definition used. Adherence to preventive recommendations and to adequate weight promotion is very low. In the absence of a specific treatment for MS, integrated intervention based on a sustained increase in physical activity and changes in diet should be reinforced.</p

    TAIGA -- an advanced hybrid detector complex for astroparticle physics and high energy gamma-ray astronomy

    Full text link
    The physical motivations, present status, main results in study of cosmic rays and in the field of gamma-ray astronomy as well future plans of the TAIGA-1 (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) project are presented. The TAIGA observatory addresses ground-based gamma-ray astronomy and astroparticle physics at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV. The pilot TAIGA-1 complex is located in the Tunka valley, ~50 km west from the southern tip of the lake Baikal.Comment: Submission to SciPost Phys. Proc., 10 pages, 2 figure

    Primary Cosmic Rays Energy Spectrum and Mean Mass Composition by the Data of the TAIGA Astrophysical Complex

    Full text link
    The corrected dependence of the mean depth of the EAS maximum XmaxX_{max} on the energy was obtained from the data of the Tunka-133 array for 7 years and the TAIGA-HiSCORE array for 2 year. The parameter lnA\langle\ln A\rangle, characterizing the mean mass compositon was derived from these results. The differential energy spectrum of primary cosmic rays in the energy range of 210142\cdot 10^{14} - 210162\cdot 10^{16}\,eV was reconstructed using the new parameter Q100Q_{100} the Cherenkov light flux at the core distance 100 m.}Comment: 6 pages, 3 figures, Submitted to SciPost Phys.Pro

    The precision of the IACT mechanical mounts of the TAIGA observatory

    Get PDF
    The TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) observatory is located in the Tunka valley (~50 km west from the southern shore of Lake Baikal) at an altitude of 675m a.s.l. The TAIGA observatory aims to address gamma-ray astronomy at energies from a few TeV to several PeV and CR physics from 100 TeV to several EeV. Its main feature is the complementary, hybrid approach to distinguish CR events from those of gamma rays. Currently TAIGA consists of ~80 wide-angle air Cherenkov detectors (HiSCORE stations), three ~4m diameter IACTs and several hundred surface and underground muon detectors, grouped in three jointly operating arrays. The exceptional feature of the TAIGA IACT array is it’s topology that allows one to aim for the optimal cost/performance by scanning the optimal inter-telescope distances from 300m up to 600m. The IACTs have alt-azimuth type mounts and 576-pixel imaging cameras in the foci, covering 9.6° aperture in the sky. The segmented reflectors of ~10m² area follow the Davis-Cotton design. The largest diameter of the hexagonal shape reflector is 4.3m and the focal length is 4.75m. The rigid telescope mount provides a maximum displacement of EAS image below 2mm (i.e. ≤ 0.024°) in the photodetector plane. The main parameters of IACTs are of a crucial importance for their efficient operation and is presented

    ELGAR - A European Laboratory for Gravitation and Atom-interferometric Research

    Get PDF
    Gravitational waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to extend the detection bandwidth to low frequency. The scientific potential of multi-frequency GW astronomy is enormous as it would enable to obtain a more complete picture of cosmic events and mechanisms. This is a unique and entirely new opportunity for the future of astronomy, the success of which depends upon the decisions being made on existing and new infrastructures. The prospect of combining observations from the future space-based instrument LISA together with third generation ground based detectors will open the way toward multi-band GW astronomy, but will leave the infrasound (0.1–10 Hz) band uncovered. GW detectors based on matter wave interferometry promise to fill such a sensitivity gap. We propose the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an underground infrastructure based on the latest progress in atomic physics, to study space–time and gravitation with the primary goal of detecting GWs in the infrasound band. ELGAR will directly inherit from large research facilities now being built in Europe for the study of large scale atom interferometry and will drive new pan-European synergies from top research centers developing quantum sensors. ELGAR will measure GW radiation in the infrasound band with a peak strain sensitivity of 3.3 x 10 [hoch]-20 / [Wurzel] Hz at 1.7 Hz. The antenna will have an impact on diverse fundamental and applied research fields beyond GW astronomy, including gravitation, general relativity, and geology

    Method of Separation Between Light and Heavy Groups of Primary CR Nuclei by LDF of Cherenkov Light in the Range 300–3000 TeV

    Get PDF
    The problem of chemical composition below the knee in the cosmic-ray energy spectrum has not yet been solved due to low statistics collected from direct experiments. In the HiSCORE experiment the lateral distribution functions (LDF) of Cherenkov light of EASs with energy greater than hundreds of TeV can be measured in detail for millions of individual events. A full steepness of LDF is sensitive to the depth of shower maximum and as a result to primary particle type. In this paper, we developed a parametric method of separation between heavy and light groups of nuclei using the ’knee-like’ approximation of LDF and taking into account measurement uncertainty
    corecore