60 research outputs found

    Optical cooling and trapping of highly magnetic atoms: The benefits of a spontaneous spin polarization

    Full text link
    From the study of long-range-interacting systems to the simulation of gauge fields, open-shell Lanthanide atoms with their large magnetic moment and narrow optical transitions open novel directions in the field of ultracold quantum gases. As for other atomic species, the magneto-optical trap (MOT) is the working horse of experiments but its operation is challenging, due to the large electronic spin of the atoms. Here we present an experimental study of narrow-line Dysprosium MOTs. We show that the combination of radiation pressure and gravitational forces leads to a spontaneous polarization of the electronic spin. The spin composition is measured using a Stern-Gerlach separation of spin levels, revealing that the gas becomes almost fully spin-polarized for large laser frequency detunings. In this regime, we reach the optimal operation of the MOT, with samples of typically 3×1083\times 10^8 atoms at a temperature of 15\,ÎŒ\muK. The spin polarization reduces the complexity of the radiative cooling description, which allows for a simple model accounting for our measurements. We also measure the rate of density-dependent atom losses, finding good agreement with a model based on light-induced Van der Waals forces. A minimal two-body loss rate ÎČ∌2×10−11 \beta\sim 2\times10^{-11}\,cm3^{3}/s is reached in the spin-polarized regime. Our results constitute a benchmark for the experimental study of ultracold gases of magnetic Lanthanide atoms.Comment: 21 pages, 9 figure

    ELGAR—a European Laboratory for Gravitation and Atom-interferometric Research

    Get PDF
    Gravitational waves (GWs) were observed for the first time in 2015, one century after Einstein predicted their existence. There is now growing interest to extend the detection bandwidth to low frequency. The scientific potential of multi-frequency GW astronomy is enormous as it would enable to obtain a more complete picture of cosmic events and mechanisms. This is a unique and entirely new opportunity for the future of astronomy, the success of which depends upon the decisions being made on existing and new infrastructures. The prospect of combining observations from the future space-based instrument LISA together with third generation ground based detectors will open the way toward multi-band GW astronomy, but will leave the infrasound (0.1–10 Hz) band uncovered. GW detectors based on matter wave interferometry promise to fill such a sensitivity gap. We propose the European Laboratory for Gravitation and Atom-interferometric Research (ELGAR), an underground infrastructure based on the latest progress in atomic physics, to study space–time and gravitation with the primary goal of detecting GWs in the infrasound band. ELGAR will directly inherit from large research facilities now being built in Europe for the study of large scale atom interferometry and will drive new pan-European synergies from top research centers developing quantum sensors. ELGAR will measure GW radiation in the infrasound band with a peak strain sensitivity of 3.3×10−22/Hz3.3{\times}1{0}^{-22}/\sqrt{\text{Hz}} at 1.7 Hz. The antenna will have an impact on diverse fundamental and applied research fields beyond GW astronomy, including gravitation, general relativity, and geology.AB acknowledges support from the ANR (project EOSBECMR), IdEx Bordeaux—LAPHIA (project OE-TWR), theQuantERA ERA-NET (project TAIOL) and the Aquitaine Region (projets IASIG3D and USOFF).XZ thanks the China Scholarships Council (No. 201806010364) program for financial support. JJ thanks ‘AssociationNationale de la Recherche et de la Technologie’ for financial support (No. 2018/1565).SvAb, NG, SL, EMR, DS, and CS gratefully acknowledge support by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grants No. DLR∌50WM1641 (PRIMUS-III), 50WM1952 (QUANTUS-V-Fallturm), and 50WP1700 (BECCAL), 50WM1861 (CAL), 50WM2060 (CARIOQA) as well as 50RK1957 (QGYRO)SvAb, NG, SL, EMR, DS, and CS gratefully acknowledge support by ‘NiedersĂ€chsisches Vorab’ through the ‘Quantum- and Nano-Metrology (QUANOMET)’ initiative within the project QT3, and through ‘Förderung von Wissenschaft und Technik in Forschung und Lehre’ for the initial funding of research in the new DLR-SI Institute, the CRC 1227 DQ-mat within the projects A05 and B07DS gratefully acknowledges funding by the Federal Ministry of Education and Research (BMBF) through the funding program Photonics Research Germany under contract number 13N14875.RG acknowledges Ville de Paris (Emergence programme HSENS-MWGRAV), ANR (project PIMAI) and the Fundamental Physics and Gravitational Waves (PhyFOG) programme of Observatoire de Paris for support. We also acknowledge networking support by the COST actions GWverse CA16104 and AtomQT CA16221 (Horizon 2020 Framework Programme of the European Union).The work was also supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant Nos.∌50WM1556, 50WM1956 and 50WP1706 as well as through the DLR Institutes DLR-SI and DLR-QT.PA-S, MN, and CFS acknowledge support from contracts ESP2015-67234-P and ESP2017-90084-P from the Ministry of Economy and Business of Spain (MINECO), and from contract 2017-SGR-1469 from AGAUR (Catalan government).SvAb, NG, SL, EMR, DS, and CS gratefully acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2123 QuantumFrontiers—390837967 (B2) andCRC1227 ‘DQ-mat’ within projects A05, B07 and B09.LAS thanks Sorbonne UniversitĂ©s (Emergence project LORINVACC) and Conseil Scientifique de l'Observatoire de Paris for funding.This work was realized with the financial support of the French State through the ‘Agence Nationale de la Recherche’ (ANR) in the frame of the ‘MRSEI’ program (Pre-ELGAR ANR-17-MRS5-0004-01) and the ‘Investissement d'Avenir’ program (Equipex MIGA: ANR-11-EQPX-0028, IdEx Bordeaux—LAPHIA: ANR-10-IDEX-03-02).Peer Reviewe

    Moon influence on equatorial atmospheric angular momentum

    No full text
    International audienceThe variation of the equatorial atmospheric angular momentum function, coordinated with respect to a star-fixed system, is investigated in relation with the lunar tide. We isolate the rapid fluctuations, below 30 days, where Moon motion has a possible influence. First we notice that pressure term and wind term are almost proportional, by contrast to celestial seasonal band (S1). This would mean that, in this frequency band, the torque of the atmosphere on the solid Earth mostly results from the equatorial bulge. Spectrum reveals sharp lunar tidal peaks at 13.66 days (O1 diurnal tide in the terrestrial frame) and 13.63 days, reflecting the Moon influence on meridional circulation. We also observe powerful episodic fluctuations between 5 and 8 days (up to 10 mas), possibly resulting from non linear effect of the O1 tide, or tidal waves 2Q1 (6.86 days) and sigma1 (7.095 days)

    About moon as possible climatological factor

    No full text
    International audienc

    Moon influence on equatorial atmospheric angular momentum

    No full text
    International audienceThe variation of the equatorial atmospheric angular momentum function, coordinated with respect to a star-fixed system, is investigated in relation with the lunar tide. We isolate the rapid fluctuations, below 30 days, where Moon motion has a possible influence. First we notice that pressure term and wind term are almost proportional, by contrast to celestial seasonal band (S1). This would mean that, in this frequency band, the torque of the atmosphere on the solid Earth mostly results from the equatorial bulge. Spectrum reveals sharp lunar tidal peaks at 13.66 days (O1 diurnal tide in the terrestrial frame) and 13.63 days, reflecting the Moon influence on meridional circulation. We also observe powerful episodic fluctuations between 5 and 8 days (up to 10 mas), possibly resulting from non linear effect of the O1 tide, or tidal waves 2Q1 (6.86 days) and sigma1 (7.095 days)
    • 

    corecore