44 research outputs found

    Evaluation of numerical models by FerryBox and fixed platform in situ data in the southern North Sea

    Get PDF
    For understanding and forecasting of hydrodynamics in coastal regions, numerical models have served as an important tool for many years. In order to assess the model performance, we compared simulations to observational data of water temperature and salinity. Observations were available from FerryBox transects in the southern North Sea and, additionally, from a fixed platform of the MARNET network. More detailed analyses have been made at three different stations, located off the English eastern coast, at the Oyster Ground and in the German Bight. FerryBoxes installed on ships of opportunity (SoO) provide high-frequency surface measurements along selected tracks on a regular basis. The results of two operational hydrodynamic models have been evaluated for two different time periods: BSHcmod v4 (January 2009 to April 2012) and FOAM AMM7 NEMO (April 2011 to April 2012). While they adequately simulate temperature, both models underestimate salinity, especially near the coast in the southern North Sea. Statistical errors differ between the two models and between the measured parameters. The root mean square error (RMSE) of water temperatures amounts to 0.72 °C (BSHcmod v4) and 0.44 °C (AMM7), while for salinity the performance of BSHcmod is slightly better (0.68 compared to 1.1). The study results reveal weaknesses in both models, in terms of variability, absolute levels and limited spatial resolution. Simulation of the transition zone between the coasts and the open sea is still a demanding task for operational modelling. Thus, FerryBox data, combined with other observations with differing temporal and spatial scales, can serve as an invaluable tool not only for model evaluation, but also for model optimization by assimilation of such high-frequency observations

    Prospects for improving the representation of coastal and shelf seas in global ocean models

    Get PDF
    Accurately representing coastal and shelf seas in global ocean models represents one of the grand challenges of Earth system science. They are regions of immense societal importance through the goods and services they provide, hazards they pose and their role in global-scale processes and cycles, e.g. carbon fluxes and dense water formation. However, they are poorly represented in the current generation of global ocean models. In this contribution, we aim to briefly characterise the problem, and then to identify the important physical processes, and their scales, needed to address this issue in the context of the options available to resolve these scales globally and the evolving computational landscape. We find barotropic and topographic scales are well resolved by the current state-of-the-art model resolutions, e.g. nominal 1∕12°, and still reasonably well resolved at 1∕4°; here, the focus is on process representation. We identify tides, vertical coordinates, river inflows and mixing schemes as four areas where modelling approaches can readily be transferred from regional to global modelling with substantial benefit. In terms of finer-scale processes, we find that a 1∕12° global model resolves the first baroclinic Rossby radius for only  ∼ 8% of regions  < 500m deep, but this increases to  ∼ 70% for a 1∕72° model, so resolving scales globally requires substantially finer resolution than the current state of the art. We quantify the benefit of improved resolution and process representation using 1∕12° global- and basin-scale northern North Atlantic nucleus for a European model of the ocean (NEMO) simulations; the latter includes tides and a k-ε vertical mixing scheme. These are compared with global stratification observations and 19 models from CMIP5. In terms of correlation and basin-wide rms error, the high-resolution models outperform all these CMIP5 models. The model with tides shows improved seasonal cycles compared to the high-resolution model without tides. The benefits of resolution are particularly apparent in eastern boundary upwelling zones. To explore the balance between the size of a globally refined model and that of multiscale modelling options (e.g. finite element, finite volume or a two-way nesting approach), we consider a simple scale analysis and a conceptual grid refining approach. We put this analysis in the context of evolving computer systems, discussing model turnaround time, scalability and resource costs. Using a simple cost model compared to a reference configuration (taken to be a 1∕4° global model in 2011) and the increasing performance of the UK Research Councils' computer facility, we estimate an unstructured mesh multiscale approach, resolving process scales down to 1.5km, would use a comparable share of the computer resource by 2021, the two-way nested multiscale approach by 2022, and a 1∕72° global model by 2026. However, we also note that a 1∕12° global model would not have a comparable computational cost to a 1° global model in 2017 until 2027. Hence, we conclude that for computationally expensive models (e.g. for oceanographic research or operational oceanography), resolving scales to  ∼ 1.5km would be routinely practical in about a decade given substantial effort on numerical and computational development. For complex Earth system models, this extends to about 2 decades, suggesting the focus here needs to be on improved process parameterisation to meet these challenges

    Evaluating the impact of atmospheric forcing and air–sea coupling on near-coastal regional ocean prediction

    Get PDF
    Atmospheric forcing applied as ocean model boundary conditions can have a critical impact on the quality of ocean forecasts. This paper assesses the sensitivity of an eddy-resolving (1.5 km resolution) regional ocean model of the north-west European Shelf (NWS) to the choice of atmospheric forcing and atmosphere–ocean coupling. The analysis is focused on a month-long simulation experiment for July 2014 and evaluation of simulated sea surface temperature (SST) in a shallow near-coastal region to the south-west of the UK (Celtic Sea and western English Channel). Observations of the ocean and atmosphere are used to evaluate model results, with a particular focus on the L4 ocean buoy from the Western Channel Observatory as a rare example of co-located data above and below the sea surface. The impacts of differences in the atmospheric forcing are illustrated by comparing results from an ocean model run in forcing mode using operational global-scale numerical weather prediction (NWP) data with an ocean model run forced by a convective-scale regional atmosphere model. The value of dynamically representing feedbacks between the atmosphere and ocean state is assessed via the use of these model components within a fully coupled ocean–wave–atmosphere system. Simulated SSTs show considerable sensitivity to atmospheric forcing and to the impact of model coupling in near-coastal areas. A warm ocean bias relative to in situ observations in the simulation forced by global-scale NWP (0.7 K in the model domain) is shown to be reduced (to 0.4 K) via the use of the 1.5 km resolution regional atmospheric forcing. When simulated in coupled mode, this bias is further reduced (by 0.2 K). Results demonstrate much greater variability of both the surface heat budget terms and the near-surface winds in the convective-scale atmosphere model data, as might be expected. Assessment of the surface heat budget and wind forcing over the ocean is challenging due to a scarcity of observations. However, it can be demonstrated that the wind speed over the ocean simulated by the convective-scale atmosphere did not agree as well with the limited number of observations as the global-scale NWP data did. Further partially coupled experiments are discussed to better understand why the degraded wind forcing does not detrimentally impact on SST results

    Research priorities in support of ocean monitoring and forecasting at the Met Office

    Get PDF
    Ocean monitoring and forecasting services are increasingly being used by a diverse community of public and commercial organizations. The Met Office, as the body responsible for severe weather prediction, has for many years been involved in providing forecasts of aspects of the marine environment. This paper describes how these have evolved to include a range of wave, surge, and ocean reanalysis, analysis, and forecasts services. To support these services, and to ensure they evolve to meet the demands of users and are based on the best available science, a number of scientific challenges need to be addressed. The paper goes on to summarize the key challenges, and highlights some priorities for the ocean monitoring and forecasting research group at the Met Office. There is a need to both develop the underpinning science of the modelling and data assimilation systems and to maximize the benefits from observations and other inputs to the systems. Systematic evaluation underpins this science, and also needs to be the focus of research

    The impact of ocean‐wave coupling on the upper ocean circulation during storm events

    Get PDF
    Many human activities rely on accurate knowledge of the sea surface dynamics. This is especially true during storm events, when wave-current interactions might represent a leading order process of the upper ocean. In this study, we assess and analyze the impact of including three wave-dependent processes in the ocean momentum equation of the Met Office North West European Shelf ocean-wave forecasting system on the accuracy of the simulated surface circulation. The analysis is conducted using ocean currents and Stokes drift data produced by different implementations of the coupled forecasting systems to simulate the trajectories of surface (iSphere) and 15 m drogued (SVP) drifters affected by four storms selected from winter 2016. Ocean and wave simulations differ only in the degree of coupling and the skills of the Lagrangian simulations are evaluated by comparing model results against the observed drifter tracks. Results show that, during extreme events, ocean-wave coupling improves the accuracy of the surface dynamics by 4%. Improvements are larger for ocean currents on the shelf (8%) than in the open ocean (4%): this is thought to be due to the synergy between strong tidal currents and more mature decaying waves. We found that the Coriolis-Stokes forcing is the dominant wave-current interaction for both type of drifters; for iSpheres the secondary wave effect is the wave-dependent sea surface roughness while for SVPs the wave-modulated water-side stress is more important. Our results indicate that coupled ocean-wave systems may play a key role for improving the accuracy of particle transport simulations

    Recent Change—North Sea

    Get PDF
    This chapter discusses past and ongoing change in the following physical variables within the North Sea: temperature, salinity and stratification; currents and circulation; mean sea level; and extreme sea levels. Also considered are carbon dioxide; pH and nutrients; oxygen; suspended particulate matter and turbidity; coastal erosion, sedimentation and morphology; and sea ice. The distinctive character of the Wadden Sea is addressed, with a particular focus on nutrients and sediments. This chapter covers the past 200 years and focuses on the historical development of evidence (measurements, process understanding and models), the form, duration and accuracy of the evidence available, and what the evidence shows in terms of the state and trends in the respective variables. Much work has focused on detecting long-term change in the North Sea region, either from measurements or with models. Attempts to attribute such changes to, for example, anthropogenic forcing are still missing for the North Sea. Studies are urgently needed to assess consistency between observed changes and current expectations, in order to increase the level of confidence in projections of expected future conditions

    GABA uptake transporters support dopamine release in dorsal striatum with maladaptive downregulation in a parkinsonism model

    Get PDF
    Striatal dopamine (DA) is critical for action and learning. Recent data show that DA release is under tonic inhibition by striatal GABA. Ambient striatal GABA tone on striatal projection neurons can be determined by plasma membrane GABA uptake transporters (GATs) located on astrocytes and neurons. However, whether striatal GATs and astrocytes determine DA output are unknown. We reveal that DA release in mouse dorsolateral striatum, but not nucleus accumbens core, is governed by GAT-1 and GAT-3. These GATs are partly localized to astrocytes, and are enriched in dorsolateral striatum compared to accumbens core. In a mouse model of early parkinsonism, GATs are downregulated, tonic GABAergic inhibition of DA release augmented, and nigrostriatal GABA co-release attenuated. These data define previously unappreciated and important roles for GATs and astrocytes in supporting DA release in striatum, and reveal a maladaptive plasticity in early parkinsonism that impairs DA output in vulnerable striatal regions

    Neodymium isotope constraints on provenance, dispersal, and climate-driven supply of Zambezi sediments along the Mozambique Margin during the past ∼45,000 years

    Get PDF
    Marine sediments deposited off the Zambezi River that drains a considerable part of the southeast African continent provide continuous records of the continental climatic and environmental conditions. Here we present time series of neodymium (Nd) isotope signatures of the detrital sediment fraction during the past ~45,000 years, to reconstruct climate-driven changes in the provenance of clays deposited along the Mozambique Margin. Coherent with the surface current regime, the Nd isotope distribution in surface sediments reveals mixing of the alongshore flowing Zambezi suspension load with sediments supplied by smaller rivers located further north. To reconstruct past changes in sediment provenances, Nd isotope signatures of clays that are not significantly fractionated during weathering processes have been obtained from core 64PE304-80, which was recovered just north of the Zambezi mouth at 1329 m water depth. Distinctly unradiogenic clay signatures (ENd values <214.2) are found during the Last Glacial Maximum, Heinrich Stadial 1, and Younger Dryas. In contrast, the Nd isotope record shows higher, more radiogenic isotope signatures during Marine Isotope Stage 3 and between ~15 and ~5 ka BP, the latter coinciding with the timing of the northern hemisphere African Humid Period. The clay-sized sediment fraction with the least radiogenic Nd isotope signatures was deposited during the Holocene, when the adjacent Mozambique Shelf became completely flooded. In general, the contribution of the distinctly unradiogenic Zambezi suspension load has followed the intensity of precession-forced monsoonal precipitation and enhanced during periods of increased southern hemisphere insolation and high-latitude northern hemispheric climate variability

    The role of stakeholders in creating societal value from coastal and ocean observations

    Get PDF
    The importance of stakeholder engagement in ocean observation and in particular the realization of economic and societal benefits is discussed, introducing a number of overarching principles such as the convergence on common goals, effective communication, co-production of information and knowledge and the need for innovation. A series of case studies examine the role of coordinating frameworks such as the United States’ Interagency Ocean Observing System (IOOS®), and the European Ocean Observing System (EOOS), public–private partnerships such as Project Azul and the Coastal Data Information Program (CDIP) and finally the role of the “third” or voluntary sector. The paper explores the value that stakeholder engagement can bring as well as making recommendations for the future
    corecore