360 research outputs found

    Propagation of HF radio waves over northerly paths: measurements,simulation and systems aspects

    Get PDF
    Large deviations in the direction of arrival of ionospherically propagating radio signals from the Great Circle Path (GCP) have serious implications for the planning and operation of communications and radiolocation systems operating within the HF-band. Very large deviations are particularly prevalent in the polar and sub-auroral regions where signals often arrive at the receiver with bearings displaced from the great circle direction by up to ±100° or more. Measurements made over several paths are presented in this paper, and the principle causes of off-great circle propagation outlined. Significant progress has been made in modelling the propagation effects and work is now in hand to incorporate the results into tools to aid the planning and operation of HF radio systems operating at northerly latitudes

    Near real-time input to a propagation model for nowcasting of HF communications with aircraft on polar routes

    Get PDF
    There is a need for improved techniques for nowcasting and forecasting (over several hours) HF propagation at northerly latitudes to support airlines operating over the increasingly popular trans-polar routes. In this paper the assimilation of real-time measurements into a propagation model developed by the authors is described, including ionosonde measurements and Total Electron Content (TEC) measurements to define the main parameters of the ionosphere. The effects of D-region absorption in the polar cap and auroral regions are integrated with the model through satellite measurements of the flux of energetic solar protons (>1 MeV) and the X-ray flux in the 0.1-0.8 nm band, and ground-based magnetometer measurements which form the Kp and Dst indices of geomagnetic activity. The model incorporates various features (e.g. convecting patches of enhanced plasma density) of the polar ionosphere that are, in particular, responsible for off-great circle propagation and lead to propagation at times and frequencies not expected from on-great circle propagation alone. The model development is supported by the collection of HF propagation measurements over several paths within the polar cap, crossing the auroral oval, and along the mid-latitude trough

    Gomesin peptides prevent proliferation and lead to the cell death of devil facial tumour disease cells.

    Get PDF
    The Tasmanian devil faces extinction due to devil facial tumour disease (DFTD), a highly transmittable clonal form of cancer without available treatment. In this study, we report the cell-autonomous antiproliferative and cytotoxic activities exhibited by the spider peptide gomesin (AgGom) and gomesin-like homologue (HiGom) in DFTD cells. Mechanistically, both peptides caused a significant reduction at G0/G1 phase, in correlation with an augmented expression of the cell cycle inhibitory proteins p53, p27, p21, necrosis, exacerbated generation of reactive oxygen species and diminished mitochondrial membrane potential, all hallmarks of cellular stress. The screening of a novel panel of AgGom-analogues revealed that, unlike changes in the hydrophobicity and electrostatic surface, the cytotoxic potential of the gomesin analogues in DFTD cells lies on specific arginine substitutions in the eight and nine positions and alanine replacement in three, five and 12 positions. In conclusion, the evidence supports gomesin as a potential antiproliferative compound against DFTD disease

    On the Nucleon Distribution Amplitude: The Heterotic Solution

    Full text link
    We present a new nucleon distribution amplitude which amalgamates features of the Chernyak-Ogloblin-Zhitnitsky model with those of the Gari-Stefanis model. This "heterotic" solution provides the possibility to have asymptotically a small ratio \hbox{GMn/GMp0.1\vert G_{M}^{n}\vert/G_{M}^{p}\le 0.1}, while fulfilling most of the sum-rule requirements up to the third order. Using this nucleon distribution amplitude we calculate the electromagnetic and weak nucleon form factors, the transition form factor γpΔ+\gamma p \Delta^{+} and the decay widths of the charmonium levels 3S1^3S_{1}, 3P1^3P_{1}, and 3P2^3P_{2} into ppˉp\bar p. The agreement with the available data is remarkable in all cases.Comment: 15 pages, RUB-TPII-21/92 Preprin

    Testing the theory of immune selection in cancers that break the rules of transplantation

    Get PDF
    Modification of cancer cells likely to reduce their immunogenicity, including loss or down-regulation of MHC molecules, is now well documented and has become the main support for the concept of immune surveillance. The evidence that these modifications, in fact, result from selection by the immune system is less clear, since the possibility that they may result from reorganized metabolism associated with proliferation or from cell de-differentiation remains. Here, we (a) survey old and new transplantation experiments that test the possibility of selection and (b) survey how transmissible tumours of dogs and Tasmanian devils provide naturally evolved tests of immune surveillance

    Baryon Octet to Decuplet Electromagnetic Transitions

    Full text link
    The electromagnetic transition moments of the SU(3)SU(3)-flavor baryon octet to decuplet are examined within a lattice simulation of quenched QCD. The magnetic transition moment for the N  γΔN \; \gamma \to \Delta channel is found to be in agreement with recent experimental analyses. The lattice results indicate μpΔ/μp=0.88(15)\mu_{p \Delta} / \mu_p = 0.88(15). In terms of the Particle Data Group convention, fM1=0.231(41)f_{M1} = 0.231(41) GeV1/2{}^{-1/2} for p  γΔ+p \; \gamma \to \Delta^+ transitions. Lattice predictions for the hyperon M1M1 transition moments agree with those of a simple quark model. However the manner in which the quarks contribute to the transition moments in the lattice simulation is different from that anticipated by quark model calculations. The scalar quadrupole form factor exhibits a behavior consistent with previous multipole analyses. The E2/M1E2/M1 multipole transition moment ratios are also determined. The lattice results suggest REMGE2/GM1=+3±8R_{EM} \equiv -{\cal G}_{E2}/{\cal G}_{M1} = +3\pm 8 \% for p  γΔ+p \; \gamma \to \Delta^+ transitions. Of particular interest are significant nonvanishing signals for the E2/M1E2/M1 ratio in Ξ\Xi^- and Σ\Sigma^- electromagnetic transitions.Comment: PostScript file, 37 pages including figures. U. MD PP #93-085, U. KY PP #UK/92-09, TRIUMF PP #TRI-PP-92-12

    Personalized Antihypertensive Treatment Optimization With Smartphone-Enabled Remote Precision Dosing of Amlodipine During the COVID-19 Pandemic (PERSONAL-CovidBP Trial).

    Get PDF
    BACKGROUND: The objective of the PERSONAL-CovidBP (Personalised Electronic Record Supported Optimisation When Alone for Patients With Hypertension: Pilot Study for Remote Medical Management of Hypertension During the COVID-19 Pandemic) trial was to assess the efficacy and safety of smartphone-enabled remote precision dosing of amlodipine to control blood pressure (BP) in participants with primary hypertension during the COVID-19 pandemic. METHODS AND RESULTS: This was an open-label, remote, dose titration trial using daily home self-monitoring of BP, drug dose, and side effects with linked smartphone app and telemonitoring. Participants aged ≥18 years with uncontrolled hypertension (5-7 day baseline mean ≥135 mm Hg systolic BP or ≥85 mm Hg diastolic BP) received personalized amlodipine dose titration using novel (1, 2, 3, 4, 6, 7, 8, 9 mg) and standard (5 and 10 mg) doses daily over 14 weeks. The primary outcome of the trial was mean change in systolic BP from baseline to end of treatment. A total of 205 participants were enrolled and mean BP fell from 142/87 (systolic BP/diastolic BP) to 131/81 mm Hg (a reduction of 11 (95% CI, 10-12)/7 (95% CI, 6-7) mm Hg, P<0.001). The majority of participants achieved BP control on novel doses (84%); of those participants, 35% were controlled by 1 mg daily. The majority (88%) controlled on novel doses had no peripheral edema. Adherence to BP recording and reported adherence to medication was 84% and 94%, respectively. Patient retention was 96% (196/205). Treatment was well tolerated with no withdrawals from adverse events. CONCLUSIONS: Personalized dose titration with amlodipine was safe, well tolerated, and efficacious in treating primary hypertension. The majority of participants achieved BP control on novel doses, and with personalization of dose there were no trial discontinuations due to drug intolerance. App-assisted remote clinician dose titration may better balance BP control and adverse effects and help optimize long-term care. REGISTRATION: URL: clinicaltrials.gov. Identifier: NCT04559074

    Estimating Genetic Variability in Non-Model Taxa: A General Procedure for Discriminating Sequence Errors from Actual Variation

    Get PDF
    Genetic variation is the driving force of evolution and as such is of central interest for biologists. However, inadequate discrimination of errors from true genetic variation could lead to incorrect estimates of gene copy number, population genetic parameters, phylogenetic relationships and the deposition of gene and protein sequences in databases that are not actually present in any organism. Misincorporation errors in multi-template PCR cloning methods, still commonly used for obtaining novel gene sequences in non-model species, are difficult to detect, as no previous information may be available about the number of expected copies of genes belonging to multi-gene families. However, studies employing these techniques rarely describe in any great detail how errors arising in the amplification process were detected and accounted for. Here, we estimated the rate of base misincorporation of a widely-used PCR-cloning method, using a single copy mitochondrial gene from a single individual to minimise variation in the template DNA, as 1.62×10−3 errors per site, or 9.26×10−5 per site per duplication. The distribution of errors among sequences closely matched that predicted by a binomial distribution function. The empirically estimated error rate was applied to data, obtained using the same methods, from the Phospholipase A2 toxin family from the pitviper Ovophis monticola. The distribution of differences detected closely matched the expected distribution of errors and we conclude that, when undertaking gene discovery or assessment of genetic diversity using this error-prone method, it will be informative to empirically determine the rate of base misincorporation
    corecore