931 research outputs found

    Carbon dioxide capture from a cement manufacturing process

    Get PDF
    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition

    Ttk69-dependent repression of lozenge prevents the ectopic development of R7 cells in the Drosophila larval eye disc

    Get PDF
    Background: During the development of the Drosophila eye, specific cell types differentiate from an initially equipotent group of uncommitted precursor cells. The lozenge (lz) gene, which is a member of the Runt family of transcriptional regulators, plays a pivotal role in mediating this process through regulating the expression of several fate-specifying transcription factors. However, the regulation of lz, and the control of lz expression levels in different cell types is not fully understood. Results: Here, we show a genetic interaction between Tramtrack69 (Ttk69) a key transcriptional repressor and an inhibitor of neuronal fate specification, and lz, the master patterning gene of cells posterior to the morphogenetic furrow in the Drosophila eye disc. Loss of Ttk69 expression causes the development of ectopic R7 cells in the third instar eye disc, with these cells being dependent upon Lz for their development. Using the binary UAS Gal4 system, we show that overexpression of Ttk69 causes the loss of lz-dependent differentiating cells, and a down-regulation of Lz expression in the developing eye. The loss of lz-dependent cells can be rescued by overexpressing lz via a GMR-lz transgene. We provide additional data showing that factors functioning upstream of Ttk69 in eye development regulate lz in a Ttk69-dependent manner. Conclusions: Our results lead us to conclude that Ttk69 can either directly or indirectly repress lz gene expression to prevent the premature development of R7 precursor cells in the developing eye of Drosophila. We therefore define a mechanism for the tight regulatory control of the master pre-patterning gene, lz, in early Drosophila eye development and provide insight into how differential levels of lz expression can be achieved to effect specific cell fate outcomes

    Giant crystal-electric-field effect and complex magnetic behavior in single-crystalline CeRh3Si2

    Full text link
    Single-crystalline CeRh3Si2 was investigated by means of x-ray diffraction, magnetic susceptibility, magnetization, electrical resistivity, and specific heat measurements carried out in wide temperature and magnetic field ranges. Moreover, the electronic structure of the compound was studied at room temperature by cerium core-level x-ray photoemission spectroscopy (XPS). The physical properties were analyzed in terms of crystalline electric field and compared with results of ab-initio band structure calculations performed within the density functional theory approach. The compound was found to crystallize in the orthorhombic unit cell of the ErRh3Si2 type (space group Imma -- No.74, Pearson symbol: oI24) with the lattice parameters: a = 7.1330(14) A, b = 9.7340(19) A, and c = 5.6040(11) A. Analysis of the magnetic and XPS data revealed the presence of well localized magnetic moments of trivalent cerium ions. All physical properties were found to be highly anisotropic over the whole temperature range studied, and influenced by exceptionally strong crystalline electric field with the overall splitting of the 4f1 ground multiplet exceeding 5700 K. Antiferromagnetic order of the cerium magnetic moments at TN = 4.70(1)K and their subsequent spin rearrangement at Tt = 4.48(1) K manifest themselves as distinct anomalies in the temperature characteristics of all investigated physical properties and exhibit complex evolution in an external magnetic field. A tentative magnetic B-T phase diagram, constructed for B parallel to the b-axis being the easy magnetization direction, shows very complex magnetic behavior of CeRh3Si2, similar to that recently reported for an isostructural compound CeIr3Si2. The electronic band structure calculations corroborated the antiferromagnetic ordering of the cerium magnetic moments and well reproduced the experimental XPS valence band spectrum.Comment: 32 pages, 12 figures, to appear in Physical Review

    Comparison of Paired- and Multiple-Stimulus Preference Assessments using a Runway Task by Dogs

    Full text link
    Preference assessments identify foods that might be valued by an animal but do not capture differences in the magnitude of value. In combination with demand, the more effort required to acquire the commodity, the more valued and likely it is to function as an effective reinforcer for use in dog training. In the current experiment, two preference assessments' applicability was measured using a combination of choice assessment and an effortful runway task. Eight dogs experienced a paired-stimulus preference assessment and multiple stimulus without replacement preference assessments combined with a 3-m runway task. The preference assessments identified different most-preferred foods but the same least-preferred foods. The reinforcer assessment results showed that the dogs moved faster to obtain their most preferred food as identified by the multiple-stimulus-without-replacement-assessment compared to the most preferred foods identified in the paired stimulus assessment. The paired- or multiple-stimulus-without-replacement preference assessments identified highly valued foods; however, the applicability of that commodity as a reinforcer was not independent of the assessment method. To ensure accurate reinforcer identification and consistency, a preference assessment should be conducted under similar conditions to that experienced when the reinforcer is used in training. Overall, the multiple stimulus without replacement preference assessment would be more useful to trainers, owners or scientists wanting to identify high-value foods for their animals to function as effective reinforcers for the elicitation of behaviors in a training context

    Native interface of the SAM domain polymer of TEL

    Get PDF
    BACKGROUND: TEL is a transcriptional repressor containing a SAM domain that forms a helical polymer. In a number of hematologic malignancies, chromosomal translocations lead to aberrant fusions of TEL-SAM to a variety of other proteins, including many tyrosine kinases. TEL-SAM polymerization results in constitutive activation of the tyrosine kinase domains to which it becomes fused, leading to cell transformation. Thus, inhibitors of TEL-SAM self-association could abrogate transformation in these cells. In previous work, we determined the structure of a mutant TEL-SAM polymer bearing a Val to Glu substitution in center of the subunit interface. It remained unclear how much the mutation affected the architecture of the polymer, however. RESULTS: Here we determine the structure of the native polymer interface. To accomplish this goal, we introduced mutations that block polymer extension, producing a heterodimer with a wild-type interface. We find that the structure of the wild-type polymer interface is quite similar to the mutant structure determined previously. With the structure of the native interface, it is possible to evaluate the potential for developing therapeutic inhibitors of the interaction. We find that the interacting surfaces of the protein are relatively flat, containing no obvious pockets for the design of small molecule inhibitors. CONCLUSION: Our results confirm the architecture of the TEL-SAM polymer proposed previously based on a mutant structure. The fact that the interface contains no obvious potential binding pockets suggests that it may be difficult to find small molecule inhibitors to treat malignancies in this way

    Circulation and exchange in choked marginal seas

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 2639-2661, doi:10.1175/2008JPO3946.1.A theory for the exchange between a rotating, buoyancy-forced marginal sea and an ocean is developed and tested numerically. Cooling over the marginal sea leads to sinking and sets up a two-layer exchange flow, with a warm surface layer entering from the ocean and a cool layer exiting at depth. The connecting strait is sufficiently narrow and shallow to cause the exchange flow to be hydraulically controlled. The incoming surface layer forms a baroclinically unstable boundary current that circles the marginal sea in a cyclonic sense and feeds heat to the interior by way of eddies. Consistent with the overall heat and volume balances for the marginal sea, there is a continuous family of hydraulically controlled states with critical flow at the most constricted section of the strait. Included in this family is a limiting “maximal-exchange” solution with two sections of hydraulic control in the strait and with fixed layer depths at the most constricted section. The state of exchange for a given forcing is predicted using a theory that assumes energy conservation over a certain path connecting the strait to the marginal sea or, in some cases, the ocean. Depending on the configuration of the exchange, long-wave information may be blocked from entering the strait from the marginal sea, from the open ocean, or both. The scenario that holds determines what is predicted and what needs to be input. Numerical tests of the prediction for the temperature difference and the state of exchange are carried out for straits with a pure contraction in width and for a constant width strait with a topographic sill. The comparison is reasonable in most cases, though the numerical model is not able to reproduce cases of multiple states predicted by the theory for certain forcing values. The analytical model is an alternative to the Price and Yang and Siddall et al. models of a marginal sea outflow.This work was supported by the National Science Foundation under Grants OCE-0525729 and OCE-0423975

    Uncertainties in the modelled CO2 threshold for Antarctic glaciation

    Get PDF
    A frequently cited atmospheric CO2 threshold for the onset of Antarctic glaciation of ∼780 ppmv is based on the study of DeConto and Pollard (2003) using an ice sheet model and the GENESIS climate model. Proxy records suggest that atmospheric CO2 concentrations passed through this threshold across the Eocene-Oligocene transition ∼34 Ma. However, atmospheric CO2 concentrations may have been close to this threshold earlier than this transition, which is used by some to suggest the possibility of Antarctic ice sheets during the Eocene. Here we investigate the climate model dependency of the threshold for Antarctic glaciation by performing offline ice sheet model simulations using the climate from 7 different climate models with Eocene boundary conditions (HadCM3L, CCSM3, CESM1.0, GENESIS, FAMOUS, ECHAM5 and GISS-ER). These climate simulations are sourced from a number of independent studies, and as such the boundary conditions, which are poorly constrained during the Eocene, are not identical between simulations. The results of this study suggest that the atmospheric CO2 threshold for Antarctic glaciation is highly dependent on the climate model used and the climate model configuration. A large discrepancy between the climate model and ice sheet model grids for some simulations leads to a strong sensitivity to the lapse rate parameter
    corecore