1,058 research outputs found

    The flow of plasma in the solar terrestrial environment

    Get PDF
    The overall goal of our NASA Theory Program was to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, with the funding from this NASA program, we concentrated on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we developed unique global models that allowed us to study the coupling between the different regions. These results are highlighted in the next section. Another important aspect of our NASA Theory Program concerned the effect that localized 'structure' had on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkland current patterns) or time variations in these input due to storms and substorms. Also, some of the plasma flows that we predicted with our macroscopic models could be unstable, and another one of our goals was to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another goal of our NASA Theory Program was to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This could involve a detailed comparison of kinetic, semi-kinetic, and hydrodynamic predictions for a given polar wind scenario or it could involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations provides insight into when the various models can be used with confidence

    Using Online Role-playing Games for Entrepreneurship Training

    Get PDF
    This edited collection of chapters explores the application, potential and challenges of game-based learning and gamification across multiple disciplines and sectors, including psychology, education, business, history, languages and the ..

    Linear modeling of possible mechanisms for parkinson tremor generation

    Get PDF
    The power of Parkinson tremor is expressed in terms of possibly changed frequency response functions between relevant variables in the neuromuscular system. The derivation starts out from a linear loopless equivalent model of mechanisms for general tremor generation. Hypothetical changes in this model from the substrate of the disease are indicated, and possible ones are inferred from literature about experiments on patients. The result indicates that in these patients tremor appears to have been generated in loops, which did not include the brain area which in surgery usually is inactivated. For some patients in the literature, these loops could involve muscle length receptors, the static sensitivity of which may have been enlarged by pathological brain activity

    The High Arctic in Extreme Winters: Vortex, Temperature, and MLS and ACE-FTS Trace Gas Evolution

    Get PDF
    The first three Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns at Eureka (80° N, 86° W) were during two extremes of Arctic winter variability: Stratospheric sudden warmings (SSWs) in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS), Sounding of the Atmosphere using Broadband Emission Radiometry, and Aura Microwave Limb Sounder (MLS), with meteorological analyses and Eureka lidar and radiosonde temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport and chemistry, and to provide a context for interpretation of campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, above where it could be accurately represented in the meteorological analyses. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher) temperatures in the upper (lower) stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with Eureka radiosondes, and with lidar data up to 50–60 km. Consistent with a strong, cold upper stratospheric vortex and enhanced radiative cooling after the SSWs, MLS and ACE-FTS trace gas measurements show strongly enhanced descent in the upper stratospheric vortex during the 2004 and 2006 Eureka campaigns compared to that in 2005

    A preliminary study for quantitative assessment with HFUS (High-frequency ultrasound) of nodular skin melanoma breslow thickness in adults before surgery: Interdisciplinary team experience

    Get PDF
    Background: Cutaneous melanoma is one of the most severe skin diseases. Nodular melanoma is the second melanoma subtype in order of frequency. The prognosis of skin melanoma depends on the vertical growth of the tumor (Breslow index). For this measurement, excisional biopsy is strongly recommended. This is, however, an invasive procedure and may cause damage to the lymphatic drainage system. The HFUS system,, can be extremely useful for determining tumor thickness in the preoperative phase, given its high resolution capacity. The aim of this preliminary study is to define the role of HFUS for the nodular skin melanoma Breslow thickness in adults before surgery by making a comparison with histological features. Methods: In this study, 14 melanocytic lesions (8 male and 6 female) were evaluated with derma-toscopic clinical features strongly indicative of nodular melanoma. Out of these, excisional biopsy of 7 lesions was requested. The ultrasounds were performed preoperatively. The images were acquired through the first ultrasound scanner with ultra-high frequency probes (range from 50MHz to 70 MHz) available on the market under the EEC mark (Vevo "MD, FUJIFILM Visual Sonics, Amsterdam, the Netherlands) equipped with a linear probe of 50-70 MHz. Results: From the ultrasonographic analysis of 14 nodular melanoma thickness was determined for the presence of two hyperechogenic laminae, separated by a hypo / anechoic space. The twelve lesions were in situ while the other two lesions showed ultrasonography for example; the satellite lesions (less than two centimeters from the primary lesion) and in transit (localizable to more than two centimeters from the primary lesion). Four of these lesions were ulcerated. A comparsion was made the 7 lesions on between the thickness calculated with this method, and that obtained on the bioptic piece. The presence of a positive concordance has been evident in all of the cases. Conclusion: If further studies are needed to support its widespread clinical use, its is believed that, in expert hands and with an interdisciplinary team, HFUS is already capable to reliably calculate a Breslow index in a large majority of patients with cutaneous melanoma

    Clinical care pathway program versus open-access system: a study on appropriateness, quality, and efficiency in the delivery of colonoscopy in the colorectal cancer

    Get PDF
    Open-access colonoscopy (OAC), whereby the colonoscopy is performed without a prior office visit with a gastroenterologist, is affected by inappropriateness which leads to overprescription and reduced availability of the procedure in case of alarming symptoms. The clinical care pathway (CCP) is a healthcare management tool promoted by national health systems to organize work-up of various morbidities. Recently, we started a CCP dedicated to colorectal cancer (CRC), including a colonoscopy session for CRC diagnosis and prevention. We aimed to evaluate the appropriateness, the quality, and the efficiency in the delivery of colonoscopy with the open-access system and a CCP program in the CRC. Quality indicators for colonoscopy in subjects in the CCP were compared to referrals by general practitioners (OAC) or by non-gastroenterologist physicians (non-gastroenterologist physician colonoscopy, NGPC). Attendance rate to colonoscopy was greater in the CCP group and NGPC group than in the OAC group (99%, 99%, and 86%, respectively). Waiting time in the CCP group was shorter than in the OAC group (3.88 +/- 2.27 vs. 32 +/- 22.31 weeks, respectively). Appropriateness of colonoscopy prescription was better in the CCP group than in the OAC group (92 vs. 50%, respectively). OAC is affected by the lack of timeliness and low appropriateness of prescription. A CCP reduces the number of inappropriate colonoscopies, especially for post-polypectomy surveillance, and improves the delivery of colonoscopy in patients requiring a fast-track examination. The high rate of inappropriate OAC suggests that this modality of healthcare should be widely reviewed

    Leuprorelin Acetate Long-Lasting Effects on GnRH Receptors of Prostate Cancer Cells: An Atomic Force Microscopy Study of Agonist/Receptor Interaction

    Get PDF
    High cell-surface GnRH receptor (GnRH-R) levels have been shown to have a major influence on the extent of GnRH agonist-mediated tumor growth inhibition. The ability of the GnRH agonist leuprorelin acetate (LA) to induce a post-transcriptional upregulation of GnRH-R at the plasma membrane of androgen-sensitive (LNCaP) and -insensitive (PC-3) prostate cancer (PCa) cells has been previously demonstrated by Western blotting. Here we performed single molecule force spectroscopy by using Atomic Force Microscopy (AFM), which has proven to be a powerful tool allowing for investigation of living cell surface biological features, such as the so far unclear GnRH agonist/receptor interaction. Thus, in the hormone-insensitive PC-3 cells, we characterized the strength of the LA-receptor binding, and the amount and distribution of the functional receptor molecules on the cell surface. The effect of a long and continuous treatment (up to 30 days) with the agonist (10-11 and 10-6 M) on the same parameters was also investigated. A GnRH-R increase was observed, reaching the maximum (~80%) after 30 days of treatment with the highest dose of LA (10-6 M). The analogue-induced increase in GnRH-R was also demonstrated by Western blotting. In addition, two different receptor bound strengths were detected by AFM, which suggests the existence of two GnRH-R classes. A homogeneous distribution of the unbinding events has been found on untreated and treated PC-3 cell surfaces. The persistence of high receptor levels at the membrane of these living cells may warrant the maintenance of the response to LA also in androgen-unresponsive PCa. Moreover, the determination of ligand/receptor bond strength could shed light on the poorly understood event of LA/GnRH-R interaction and/or address structural/chemical agonist optimizations. \ua9 2013 Lama et al
    • …
    corecore