418 research outputs found

    A rotation test for behavioural point-process data

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Animal Behaviour 76 (2008): 1429-1434, doi:10.1016/j.anbehav.2008.06.016.A common problem in animal behavior is determining whether the rate at which a certain behavioural event occurs is affected by an environmental or other factor. In the example considered later in this paper, the event is a vocalization by an individual sperm whale and the factor is the operation or non-operation of an underwater sound source. A typical experiment to test for such effects involves observing animals during control and treatment periods and recording the times of the events that occur in each. In statistical terminology, the data arising from such an experiment – the times at which events of a specified type occur – represent a point process (Cox & Lewis 1978). Events in a point process are treated as having no duration. Although this is not strictly correct for behavioural events, the approximation is reasonable when the duration of events is small in relation to the interval between them.Funding for the sperm whale experiments was provided by the Office of Naval Research, the U.S. Department of the Interior Minerals Management Service Cooperative Agreements Nos. 1435-01-02-CA-321 85186 and NA87RJ0445, and the Industry Research Funding Coalition

    Socio-Economic Instability and the Scaling of Energy Use with Population Size

    Get PDF
    The size of the human population is relevant to the development of a sustainable world, yet the forces setting growth or declines in the human population are poorly understood. Generally, population growth rates depend on whether new individuals compete for the same energy (leading to Malthusian or density-dependent growth) or help to generate new energy (leading to exponential and super-exponential growth). It has been hypothesized that exponential and super-exponential growth in humans has resulted from carrying capacity, which is in part determined by energy availability, keeping pace with or exceeding the rate of population growth. We evaluated the relationship between energy use and population size for countries with long records of both and the world as a whole to assess whether energy yields are consistent with the idea of an increasing carrying capacity. We find that on average energy use has indeed kept pace with population size over long time periods. We also show, however, that the energy-population scaling exponent plummets during, and its temporal variability increases preceding, periods of social, political, technological, and environmental change. We suggest that efforts to increase the reliability of future energy yields may be essential for stabilizing both population growth and the global socio-economic system
    corecore